Cargando…

Silk micrococoons for protein stabilisation and molecular encapsulation

Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable g...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimanovich, Ulyana, Ruggeri, Francesco S., De Genst, Erwin, Adamcik, Jozef, Barros, Teresa P., Porter, David, Müller, Thomas, Mezzenga, Raffaele, Dobson, Christopher M., Vollrath, Fritz, Holland, Chris, Knowles, Tuomas P. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524934/
https://www.ncbi.nlm.nih.gov/pubmed/28722016
http://dx.doi.org/10.1038/ncomms15902
_version_ 1783252554781556736
author Shimanovich, Ulyana
Ruggeri, Francesco S.
De Genst, Erwin
Adamcik, Jozef
Barros, Teresa P.
Porter, David
Müller, Thomas
Mezzenga, Raffaele
Dobson, Christopher M.
Vollrath, Fritz
Holland, Chris
Knowles, Tuomas P. J.
author_facet Shimanovich, Ulyana
Ruggeri, Francesco S.
De Genst, Erwin
Adamcik, Jozef
Barros, Teresa P.
Porter, David
Müller, Thomas
Mezzenga, Raffaele
Dobson, Christopher M.
Vollrath, Fritz
Holland, Chris
Knowles, Tuomas P. J.
author_sort Shimanovich, Ulyana
collection PubMed
description Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable geometry and variable levels of intermolecular β-sheet content in their protein shells. We demonstrate that such micrococoons can store internally the otherwise highly unstable liquid native silk for several months and without apparent effect on its functionality. We further demonstrate that these native silk micrococoons enable the effective encapsulation, storage and release of other aggregation-prone proteins, such as functional antibodies. These results show that native silk micrococoons are capable of preserving the full activity of sensitive cargo proteins that can aggregate and lose function under conditions of bulk storage, and thus represent an attractive class of materials for the storage and release of active biomolecules.
format Online
Article
Text
id pubmed-5524934
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-55249342017-07-28 Silk micrococoons for protein stabilisation and molecular encapsulation Shimanovich, Ulyana Ruggeri, Francesco S. De Genst, Erwin Adamcik, Jozef Barros, Teresa P. Porter, David Müller, Thomas Mezzenga, Raffaele Dobson, Christopher M. Vollrath, Fritz Holland, Chris Knowles, Tuomas P. J. Nat Commun Article Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable geometry and variable levels of intermolecular β-sheet content in their protein shells. We demonstrate that such micrococoons can store internally the otherwise highly unstable liquid native silk for several months and without apparent effect on its functionality. We further demonstrate that these native silk micrococoons enable the effective encapsulation, storage and release of other aggregation-prone proteins, such as functional antibodies. These results show that native silk micrococoons are capable of preserving the full activity of sensitive cargo proteins that can aggregate and lose function under conditions of bulk storage, and thus represent an attractive class of materials for the storage and release of active biomolecules. Nature Publishing Group 2017-07-19 /pmc/articles/PMC5524934/ /pubmed/28722016 http://dx.doi.org/10.1038/ncomms15902 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Shimanovich, Ulyana
Ruggeri, Francesco S.
De Genst, Erwin
Adamcik, Jozef
Barros, Teresa P.
Porter, David
Müller, Thomas
Mezzenga, Raffaele
Dobson, Christopher M.
Vollrath, Fritz
Holland, Chris
Knowles, Tuomas P. J.
Silk micrococoons for protein stabilisation and molecular encapsulation
title Silk micrococoons for protein stabilisation and molecular encapsulation
title_full Silk micrococoons for protein stabilisation and molecular encapsulation
title_fullStr Silk micrococoons for protein stabilisation and molecular encapsulation
title_full_unstemmed Silk micrococoons for protein stabilisation and molecular encapsulation
title_short Silk micrococoons for protein stabilisation and molecular encapsulation
title_sort silk micrococoons for protein stabilisation and molecular encapsulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524934/
https://www.ncbi.nlm.nih.gov/pubmed/28722016
http://dx.doi.org/10.1038/ncomms15902
work_keys_str_mv AT shimanovichulyana silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT ruggerifrancescos silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT degensterwin silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT adamcikjozef silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT barrosteresap silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT porterdavid silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT mullerthomas silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT mezzengaraffaele silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT dobsonchristopherm silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT vollrathfritz silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT hollandchris silkmicrococoonsforproteinstabilisationandmolecularencapsulation
AT knowlestuomaspj silkmicrococoonsforproteinstabilisationandmolecularencapsulation