Cargando…
Identifying and mitigating batch effects in whole genome sequencing data
BACKGROUND: Large sample sets of whole genome sequencing with deep coverage are being generated, however assembling datasets from different sources inevitably introduces batch effects. These batch effects are not well understood and can be due to changes in the sequencing protocol or bioinformatics...
Autores principales: | Tom, Jennifer A., Reeder, Jens, Forrest, William F., Graham, Robert R., Hunkapiller, Julie, Behrens, Timothy W., Bhangale, Tushar R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525370/ https://www.ncbi.nlm.nih.gov/pubmed/28738841 http://dx.doi.org/10.1186/s12859-017-1756-z |
Ejemplares similares
-
A whole genome sequencing study of moderate to severe asthma identifies a lung function locus associated with asthma risk
por: Chang, Diana, et al.
Publicado: (2022) -
Previously reported placebo-response-associated variants do not predict patient outcomes in inflammatory disease Phase III trial placebo arms
por: Haug-Baltzell, Asher, et al.
Publicado: (2018) -
geneAttribution: trait agnostic identification of candidate genes associated with noncoding variation
por: Wuster, Arthur, et al.
Publicado: (2017) -
Whole genome sequencing across clinical trials identifies rare coding variants in GPR68 associated with chemotherapy-induced peripheral neuropathy
por: Khan, Zia, et al.
Publicado: (2023) -
Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus
por: Cunninghame Graham, Deborah S., et al.
Publicado: (2011)