Cargando…
A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study
BACKGROUND: Missing data is a common problem in epidemiological studies, and is particularly prominent in longitudinal data, which involve multiple waves of data collection. Traditional multiple imputation (MI) methods (fully conditional specification (FCS) and multivariate normal imputation (MVNI))...
Autores principales: | De Silva, Anurika Priyanjali, Moreno-Betancur, Margarita, De Livera, Alysha Madhu, Lee, Katherine Jane, Simpson, Julie Anne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526258/ https://www.ncbi.nlm.nih.gov/pubmed/28743256 http://dx.doi.org/10.1186/s12874-017-0372-y |
Ejemplares similares
-
Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study
por: De Silva, Anurika Priyanjali, et al.
Publicado: (2019) -
Multiple imputation approaches for handling incomplete three‐level data with time‐varying cluster‐memberships
por: Wijesuriya, Rushani, et al.
Publicado: (2022) -
Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome
por: Middleton, Melissa, et al.
Publicado: (2022) -
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
por: Mainzer, Rheanna, et al.
Publicado: (2023) -
Bayesian imputation of time-varying covariates in linear mixed
models
por: Erler, Nicole S, et al.
Publicado: (2017)