Cargando…

Dynamic structure of locomotor behavior in walking fruit flies

The function of the brain is unlikely to be understood without an accurate description of its output, yet the nature of movement elements and their organization remains an open problem. Here, movement elements are identified from dynamics of walking in flies, using unbiased criteria. On one time sca...

Descripción completa

Detalles Bibliográficos
Autores principales: Katsov, Alexander Y, Freifeld, Limor, Horowitz, Mark, Kuehn, Seppe, Clandinin, Thomas R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526672/
https://www.ncbi.nlm.nih.gov/pubmed/28742018
http://dx.doi.org/10.7554/eLife.26410
Descripción
Sumario:The function of the brain is unlikely to be understood without an accurate description of its output, yet the nature of movement elements and their organization remains an open problem. Here, movement elements are identified from dynamics of walking in flies, using unbiased criteria. On one time scale, dynamics of walking are consistent over hundreds of milliseconds, allowing elementary features to be defined. Over longer periods, walking is well described by a stochastic process composed of these elementary features, and a generative model of this process reproduces individual behavior sequences accurately over seconds or longer. Within elementary features, velocities diverge, suggesting that dynamical stability of movement elements is a weak behavioral constraint. Rather, long-term instability can be limited by the finite memory between these elementary features. This structure suggests how complex dynamics may arise in biological systems from elements whose combination need not be tuned for dynamic stability. DOI: http://dx.doi.org/10.7554/eLife.26410.001