Cargando…

Deinococcus radiodurans Toxin–Antitoxin MazEF-dr Mediates Cell Death in Response to DNA Damage Stress

Here we identified a functional MazEF-dr system in the exceptionally stress-resistant bacterium D. radiodurans. We showed that overexpression of the toxin MazF-dr inhibited the growth of Escherichia coli. The toxic effect of MazF-dr was due to its sequence-specific endoribonuclease activity on RNAs...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tao, Weng, Yulan, Ma, Xiaoqiong, Tian, Bing, Dai, Shang, Jin, Ye, Liu, Mengjia, Li, Jiulong, Yu, Jiangliu, Hua, Yuejin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526972/
https://www.ncbi.nlm.nih.gov/pubmed/28798741
http://dx.doi.org/10.3389/fmicb.2017.01427
Descripción
Sumario:Here we identified a functional MazEF-dr system in the exceptionally stress-resistant bacterium D. radiodurans. We showed that overexpression of the toxin MazF-dr inhibited the growth of Escherichia coli. The toxic effect of MazF-dr was due to its sequence-specific endoribonuclease activity on RNAs containing a consensus 5′ACA3′, and it could be neutralized by MazE-dr. The MazF-dr showed a special cleavage preference for the nucleotide present before the ACA sequence with the order by U>A>G>C. MazEF-dr mediated the death of D. radiodurans cells under sub-lethal dose of stresses. The characteristics of programmed cell death (PCD) including membrane blebbing, loss of membrane integrity and cytoplasm condensation occurred in a fraction of the wild-type population at sub-lethal concentration of the DNA damaging agent mitomycin C (MMC); however, a MazEF-dr mutation relieved the cell death, suggesting that MazEF-dr mediated cell death through its endoribonuclease activity in response to DNA damage stress. The MazEF-dr-mediated cell death of a fraction of the population might serve as a survival strategy for the remaining population of D. radiodurans under DNA damage stress.