Cargando…

Spin caloritronic nano-oscillator

Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Safranski, C., Barsukov, I., Lee, H. K., Schneider, T., Jara, A. A., Smith, A., Chang, H., Lenz, K., Lindner, J., Tserkovnyak, Y., Wu, M., Krivorotov, I. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527023/
https://www.ncbi.nlm.nih.gov/pubmed/28744017
http://dx.doi.org/10.1038/s41467-017-00184-5
Descripción
Sumario:Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y(3)Fe(5)O(12)/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y(3)Fe(5)O(12) layer. This leads to excitation of auto-oscillations of the Y(3)Fe(5)O(12) magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications.