Cargando…
BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease
Epicardium-derived cells (EPDCs) contribute cardiovascular cell types during development and in adulthood respond to Thymosin β4 (Tβ4) and myocardial infarction (MI) by reactivating a fetal gene programme to promote neovascularization and cardiomyogenesis. The mechanism for epicardial gene (re-)acti...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527284/ https://www.ncbi.nlm.nih.gov/pubmed/28737171 http://dx.doi.org/10.1038/ncomms16034 |
Sumario: | Epicardium-derived cells (EPDCs) contribute cardiovascular cell types during development and in adulthood respond to Thymosin β4 (Tβ4) and myocardial infarction (MI) by reactivating a fetal gene programme to promote neovascularization and cardiomyogenesis. The mechanism for epicardial gene (re-)activation remains elusive. Here we reveal that BRG1, the essential ATPase subunit of the SWI/SNF chromatin–remodelling complex, is required for expression of Wilms’ tumour 1 (Wt1), fetal EPDC activation and subsequent differentiation into coronary smooth muscle, and restores Wt1 activity upon MI. BRG1 physically interacts with Tβ4 and is recruited by CCAAT/enhancer-binding protein β (C/EBPβ) to discrete regulatory elements in the Wt1 locus. BRG1-Tβ4 co-operative binding promotes optimal transcription of Wt1 as the master regulator of embryonic EPDCs. Moreover, chromatin immunoprecipitation-sequencing reveals BRG1 binding at further key loci suggesting SWI/SNF activity across the fetal epicardial gene programme. These findings reveal essential functions for chromatin–remodelling in the activation of EPDCs during cardiovascular development and repair. |
---|