Cargando…
Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus
Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527311/ https://www.ncbi.nlm.nih.gov/pubmed/28743815 http://dx.doi.org/10.1128/mBio.00899-17 |
_version_ | 1783252948696956928 |
---|---|
author | Cheng, Yi-Lin Wu, Yan-Wei Kuo, Chih-Feng Lu, Shiou-Ling Liu, Fu-Tong Anderson, Robert Lin, Chiou-Feng Liu, Yi-Ling Wang, Wan-Yu Chen, Ying-Da Zheng, Po-Xing Wu, Jiunn-Jong Lin, Yee-Shin |
author_facet | Cheng, Yi-Lin Wu, Yan-Wei Kuo, Chih-Feng Lu, Shiou-Ling Liu, Fu-Tong Anderson, Robert Lin, Chiou-Feng Liu, Yi-Ling Wang, Wan-Yu Chen, Ying-Da Zheng, Po-Xing Wu, Jiunn-Jong Lin, Yee-Shin |
author_sort | Cheng, Yi-Lin |
collection | PubMed |
description | Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells. |
format | Online Article Text |
id | pubmed-5527311 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-55273112017-08-01 Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus Cheng, Yi-Lin Wu, Yan-Wei Kuo, Chih-Feng Lu, Shiou-Ling Liu, Fu-Tong Anderson, Robert Lin, Chiou-Feng Liu, Yi-Ling Wang, Wan-Yu Chen, Ying-Da Zheng, Po-Xing Wu, Jiunn-Jong Lin, Yee-Shin mBio Research Article Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells. American Society for Microbiology 2017-07-25 /pmc/articles/PMC5527311/ /pubmed/28743815 http://dx.doi.org/10.1128/mBio.00899-17 Text en Copyright © 2017 Cheng et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Cheng, Yi-Lin Wu, Yan-Wei Kuo, Chih-Feng Lu, Shiou-Ling Liu, Fu-Tong Anderson, Robert Lin, Chiou-Feng Liu, Yi-Ling Wang, Wan-Yu Chen, Ying-Da Zheng, Po-Xing Wu, Jiunn-Jong Lin, Yee-Shin Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus |
title | Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus |
title_full | Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus |
title_fullStr | Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus |
title_full_unstemmed | Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus |
title_short | Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus |
title_sort | galectin-3 inhibits galectin-8/parkin-mediated ubiquitination of group a streptococcus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527311/ https://www.ncbi.nlm.nih.gov/pubmed/28743815 http://dx.doi.org/10.1128/mBio.00899-17 |
work_keys_str_mv | AT chengyilin galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT wuyanwei galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT kuochihfeng galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT lushiouling galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT liufutong galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT andersonrobert galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT linchioufeng galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT liuyiling galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT wangwanyu galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT chenyingda galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT zhengpoxing galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT wujiunnjong galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus AT linyeeshin galectin3inhibitsgalectin8parkinmediatedubiquitinationofgroupastreptococcus |