Cargando…
Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus
Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capabl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528207/ https://www.ncbi.nlm.nih.gov/pubmed/28770044 http://dx.doi.org/10.1002/ece3.3047 |
Sumario: | Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p‐nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min(−1) mg protein(−1), respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC‐MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4′ or 5′hydroxy‐imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development. |
---|