Cargando…
Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data
Measuring the dispersal of wildlife through landscapes is notoriously difficult. Recently, the categorical least cost path algorithm that integrates population genetic data with species distribution models has been applied to reveal population connectivity. In this study, we use this method to ident...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528243/ https://www.ncbi.nlm.nih.gov/pubmed/28770054 http://dx.doi.org/10.1002/ece3.2999 |
_version_ | 1783253031604715520 |
---|---|
author | Fan, Dengmei Sun, Zhixia Li, Bo Kou, Yixuan Hodel, Richard G. J. Jin, Zhinong Zhang, Zhiyong |
author_facet | Fan, Dengmei Sun, Zhixia Li, Bo Kou, Yixuan Hodel, Richard G. J. Jin, Zhinong Zhang, Zhiyong |
author_sort | Fan, Dengmei |
collection | PubMed |
description | Measuring the dispersal of wildlife through landscapes is notoriously difficult. Recently, the categorical least cost path algorithm that integrates population genetic data with species distribution models has been applied to reveal population connectivity. In this study, we use this method to identify the possible dispersal corridors of five plant species (Castanopsis tibetana, Schima superba, Cyclocarya paliurus, Sargentodoxa cuneata, Eomecon chionantha) in the Poyang Lake Basin (PLB, largely coinciding with Jiangxi Province), China, in the late Quaternary. The results showed that the strongest population connectivity for the five species occurred in the Wuyi Mountains and the Yu Mountains of the eastern PLB (East Corridor) during the late Quaternary. In the western PLB, populations of the five species were connected by the Luoxiao Mountains and the Jiuling Mountains (West Corridor) but with a lower degree of connectivity. There were some minor connections between the eastern and the western populations across the Gannan Hills. When the corridors of five species were overlaid, the East Corridor and the West Corridor were mostly shared by multiple species. These results indicate that plant species in the PLB could have responded to the Quaternary climate changes by moving along the East Corridor and the West Corridor. Given that dispersal corridors have seldom been considered in the governmental strategies of biodiversity conservation in the PLB, preserving and restoring natural vegetation along these corridors should be prioritized to mitigate the effects of anthropogenic climate change by facilitating migration of plant species and other biota. |
format | Online Article Text |
id | pubmed-5528243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55282432017-08-02 Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data Fan, Dengmei Sun, Zhixia Li, Bo Kou, Yixuan Hodel, Richard G. J. Jin, Zhinong Zhang, Zhiyong Ecol Evol Original Research Measuring the dispersal of wildlife through landscapes is notoriously difficult. Recently, the categorical least cost path algorithm that integrates population genetic data with species distribution models has been applied to reveal population connectivity. In this study, we use this method to identify the possible dispersal corridors of five plant species (Castanopsis tibetana, Schima superba, Cyclocarya paliurus, Sargentodoxa cuneata, Eomecon chionantha) in the Poyang Lake Basin (PLB, largely coinciding with Jiangxi Province), China, in the late Quaternary. The results showed that the strongest population connectivity for the five species occurred in the Wuyi Mountains and the Yu Mountains of the eastern PLB (East Corridor) during the late Quaternary. In the western PLB, populations of the five species were connected by the Luoxiao Mountains and the Jiuling Mountains (West Corridor) but with a lower degree of connectivity. There were some minor connections between the eastern and the western populations across the Gannan Hills. When the corridors of five species were overlaid, the East Corridor and the West Corridor were mostly shared by multiple species. These results indicate that plant species in the PLB could have responded to the Quaternary climate changes by moving along the East Corridor and the West Corridor. Given that dispersal corridors have seldom been considered in the governmental strategies of biodiversity conservation in the PLB, preserving and restoring natural vegetation along these corridors should be prioritized to mitigate the effects of anthropogenic climate change by facilitating migration of plant species and other biota. John Wiley and Sons Inc. 2017-06-06 /pmc/articles/PMC5528243/ /pubmed/28770054 http://dx.doi.org/10.1002/ece3.2999 Text en © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Fan, Dengmei Sun, Zhixia Li, Bo Kou, Yixuan Hodel, Richard G. J. Jin, Zhinong Zhang, Zhiyong Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data |
title | Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data |
title_full | Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data |
title_fullStr | Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data |
title_full_unstemmed | Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data |
title_short | Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data |
title_sort | dispersal corridors for plant species in the poyang lake basin of southeast china identified by integration of phylogeographic and geospatial data |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528243/ https://www.ncbi.nlm.nih.gov/pubmed/28770054 http://dx.doi.org/10.1002/ece3.2999 |
work_keys_str_mv | AT fandengmei dispersalcorridorsforplantspeciesinthepoyanglakebasinofsoutheastchinaidentifiedbyintegrationofphylogeographicandgeospatialdata AT sunzhixia dispersalcorridorsforplantspeciesinthepoyanglakebasinofsoutheastchinaidentifiedbyintegrationofphylogeographicandgeospatialdata AT libo dispersalcorridorsforplantspeciesinthepoyanglakebasinofsoutheastchinaidentifiedbyintegrationofphylogeographicandgeospatialdata AT kouyixuan dispersalcorridorsforplantspeciesinthepoyanglakebasinofsoutheastchinaidentifiedbyintegrationofphylogeographicandgeospatialdata AT hodelrichardgj dispersalcorridorsforplantspeciesinthepoyanglakebasinofsoutheastchinaidentifiedbyintegrationofphylogeographicandgeospatialdata AT jinzhinong dispersalcorridorsforplantspeciesinthepoyanglakebasinofsoutheastchinaidentifiedbyintegrationofphylogeographicandgeospatialdata AT zhangzhiyong dispersalcorridorsforplantspeciesinthepoyanglakebasinofsoutheastchinaidentifiedbyintegrationofphylogeographicandgeospatialdata |