Cargando…

Enhanced anticancer activity of a combination of docetaxel and Aneustat (OMN54) in a patient‐derived, advanced prostate cancer tissue xenograft model

The current first‐line treatment for advanced metastatic prostate cancer, i.e. docetaxel‐based therapy, is only marginally effective. The aim of the present study was to determine whether such therapy can be improved by combining docetaxel with Aneustat (OMN54), a multivalent botanical drug candidat...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Sifeng, Wang, Kendric, Xue, Hui, Wang, Yuwei, Wu, Rebecca, Liu, Chengfei, Gao, Allen C., Gout, Peter W., Collins, Colin C., Wang, Yuzhuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528545/
https://www.ncbi.nlm.nih.gov/pubmed/24388358
http://dx.doi.org/10.1016/j.molonc.2013.12.004
Descripción
Sumario:The current first‐line treatment for advanced metastatic prostate cancer, i.e. docetaxel‐based therapy, is only marginally effective. The aim of the present study was to determine whether such therapy can be improved by combining docetaxel with Aneustat (OMN54), a multivalent botanical drug candidate shown to have anti‐prostate cancer activity in preliminary in vitro experiments, which is currently undergoing a Phase‐I Clinical Trial. Human metastatic, androgen‐independent C4‐2 prostate cancer cells and NOD‐SCID mice bearing PTEN‐deficient, metastatic and PSA‐secreting, patient‐derived subrenal capsule LTL‐313H prostate cancer tissue xenografts were treated with docetaxel and Aneustat, alone and in combination. In vitro, Aneustat markedly inhibited C4‐2 cell replication in a dose‐dependent manner. When Aneustat was combined with docetaxel, the growth inhibitions of the drugs were essentially additive. In vivo, however, the combination of docetaxel and Aneustat enhanced anti‐tumor activity synergistically and very markedly, without inducing major host toxicity. Complete growth inhibition and shrinkage of the xenografts could be obtained with the combined drugs as distinct from the drugs on their own. Analysis of the gene expression of the xenografts using microarray indicated that docetaxel + Aneustat led to expanded anticancer activity, in particular to targeting of cancer hallmarks that were not affected by the single drugs. Our findings, obtained with a highly clinically relevant prostate cancer model, suggest, for the first time, that docetaxel‐based therapy of advanced human prostate cancer may be improved by combining docetaxel with Aneustat.