Cargando…
Tricritical point from high-field magnetoelastic and metamagnetic effects in UN
Uranium nitride (UN) is one of the most studied actinide materials as it is a promising fuel for the next generation of nuclear reactors. Despite large experimental and theoretical efforts, some of the fundamental questions such as degree of 5 f–electron localization/delocalization and its relations...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529359/ https://www.ncbi.nlm.nih.gov/pubmed/28747795 http://dx.doi.org/10.1038/s41598-017-06154-7 |
Sumario: | Uranium nitride (UN) is one of the most studied actinide materials as it is a promising fuel for the next generation of nuclear reactors. Despite large experimental and theoretical efforts, some of the fundamental questions such as degree of 5 f–electron localization/delocalization and its relationship to magneto-vibrational properties are not resolved yet. Here we show that the magnetostriction of UN measured in pulsed magnetic fields up to 65 T and below the Néel temperature is large and exhibits complex behavior with two transitions. While the high field anomaly is a field-induced metamagnetic-like transition and affects both magnetisation and magnetostriction, the low field anomaly does not contribute to the magnetic susceptibility. Our data suggest a change in the nature of the metamagnetic transition from first to second order-like at a tricritical point at T (tri) ∼ 24 K and H (tri) ∼ 52 T. The induced magnetic moment at 60 T might suggest that only one subset of magnetic moments has aligned along the field direction. Using the results obtained here we have constructed a magnetic phase diagram of UN. These studies demonstrate that dilatometry in high fields is an effective method to investigate the magneto-structural coupling in actinide materials. |
---|