Cargando…
Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks
Imaging with an adaptive optics scanning light ophthalmoscope (AOSLO) enables direct visualization of the cone photoreceptor mosaic in the living human retina. Quantitative analysis of AOSLO images typically requires manual grading, which is time consuming, and subjective; thus, automated algorithms...
Autores principales: | Cunefare, David, Fang, Leyuan, Cooper, Robert F., Dubra, Alfredo, Carroll, Joseph, Farsiu, Sina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529414/ https://www.ncbi.nlm.nih.gov/pubmed/28747737 http://dx.doi.org/10.1038/s41598-017-07103-0 |
Ejemplares similares
-
Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images
por: Cunefare, David, et al.
Publicado: (2016) -
Automatic cone photoreceptor segmentation using graph theory and dynamic programming
por: Chiu, Stephanie J., et al.
Publicado: (2013) -
Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2
por: Loo, Jessica, et al.
Publicado: (2018) -
An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy
por: Salmon, Alexander E., et al.
Publicado: (2017) -
Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning
por: Davidson, Benjamin, et al.
Publicado: (2018)