Cargando…
Multisubject “Learning” for Mental Workload Classification Using Concurrent EEG, fNIRS, and Physiological Measures
An accurate measure of mental workload level has diverse neuroergonomic applications ranging from brain computer interfacing to improving the efficiency of human operators. In this study, we integrated electroencephalogram (EEG), functional near-infrared spectroscopy (fNIRS), and physiological measu...
Autores principales: | Liu, Yichuan, Ayaz, Hasan, Shewokis, Patricia A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529418/ https://www.ncbi.nlm.nih.gov/pubmed/28798675 http://dx.doi.org/10.3389/fnhum.2017.00389 |
Ejemplares similares
-
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
Speech Recognition via fNIRS Based Brain Signals
por: Liu, Yichuan, et al.
Publicado: (2018) -
EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning
por: Cao, Jun, et al.
Publicado: (2022) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Assessing the development of mental fatigue during simulated flights with concurrent EEG-fNIRS measurement
por: Hamann, Anneke, et al.
Publicado: (2023)