Cargando…
A room-temperature refuelable lithium, iodine and air battery
We demonstrate a new refuelable lithium cell using lithium solvated electron solution (Li-SES) as anolyte and iodine solutions as catholyte. This cell shows a high OCV (~3 V). Unlike conventional rechargeable Li batteries, this kind of cell can be re-fueled in several minutes by replacing the spent...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529521/ https://www.ncbi.nlm.nih.gov/pubmed/28747774 http://dx.doi.org/10.1038/s41598-017-06321-w |
Sumario: | We demonstrate a new refuelable lithium cell using lithium solvated electron solution (Li-SES) as anolyte and iodine solutions as catholyte. This cell shows a high OCV (~3 V). Unlike conventional rechargeable Li batteries, this kind of cell can be re-fueled in several minutes by replacing the spent liquids. We also show for the first time, that Li-SES/I(2) cells which operate at room temperature, can be prepared in a fully discharged state (~0 V OCV) for safe handling, transportation and storage. Li-SES and iodine are then electrochemically generated during charge as is confirmed by UV-VIS and a qualitative test. We have also conducted proof-of-concept tests for an “indirect lithium-air” cell in which iodine is reduced at the cathode and subsequently is catalytically re-oxidized by oxygen dissolved in the catholyte. |
---|