Cargando…

Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation

The incorporation of C5-amino-modified 2′-deoxyuridine analogues into DNA have found application in nucleic acid labelling, the stabilization of nucleic acid structures, functionalization of nucleic acid aptamers and catalysts, and the investigation of sequence-specific DNA bending. In this study, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Brazier, John A., Shibata, Takayuki, Townsley, John, Taylor, Brian F., Frary, Elaine, Williams, Nicholas H., Williams, David M.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552953/
https://www.ncbi.nlm.nih.gov/pubmed/15745996
http://dx.doi.org/10.1093/nar/gki254
_version_ 1782122485966176256
author Brazier, John A.
Shibata, Takayuki
Townsley, John
Taylor, Brian F.
Frary, Elaine
Williams, Nicholas H.
Williams, David M.
author_facet Brazier, John A.
Shibata, Takayuki
Townsley, John
Taylor, Brian F.
Frary, Elaine
Williams, Nicholas H.
Williams, David M.
author_sort Brazier, John A.
collection PubMed
description The incorporation of C5-amino-modified 2′-deoxyuridine analogues into DNA have found application in nucleic acid labelling, the stabilization of nucleic acid structures, functionalization of nucleic acid aptamers and catalysts, and the investigation of sequence-specific DNA bending. In this study, we describe the physicochemical properties of four different C5-amino-modified 2′-deoxyuridines in which the amino group is tethered to the base via a 3-carbon alkyl, Z- or E-alkenyl or alkynyl linker. Conformational parameters of the nucleosides and their pK(a) values were deduced using (1)H NMR. All of them display the expected anti-conformation of the nucleoside with 2′-endo sugar puckers for the deoxyribose ring. A preference for the cisoid conformation for the Z-alkenyl analogue is found, while the E-alkenyl analogue exists exclusively as its transoid conformation. The pK(a) values range from 10.0 for the analogue with an aliphatic propyl linker to 8.5 for the propargylamino analogue. The analogues have been used for the synthesis of triple-helix forming oligonucleotides (TFOs) in which they replace thymidine in the natural sequence. Oligonucleotides containing the propargylamino analogue display the highest stability especially at low pH, while those containing analogues with propyl and especially Z-alkenyl linkers are destabilized to a great extent. TFOs containing the analogue with the E-alkenyl linker have stability similar to the unmodified structures. The chemical synthesis of TFOs containing the analogue, 5-(3-hydroxyprop-1-ynyl)-2′-deoxyuridine that possesses a neutral but polar side chain show a remarkable stability, which is higher than that of all TFOs containing the alkylamino or alkenylamino analogues and only slightly lower than that of TFOs containing the propargylamino analogue. Both the hydroxyl and propargylamino substitutions impart enhanced triple-helix stability relative to the analogous sequences containing C5-propynyl-2′-deoxyuridine. Furthermore, a similar dependence of stability on pH is found between TFOs containing the hydroxypropynyl modifications and those containing the propargylamino side chains. This suggests that the major factor responsible for stabilizing such triple helices is due to the presence of the alkyne with an attached electronegative group.
format Text
id pubmed-552953
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-5529532005-03-10 Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation Brazier, John A. Shibata, Takayuki Townsley, John Taylor, Brian F. Frary, Elaine Williams, Nicholas H. Williams, David M. Nucleic Acids Res Article The incorporation of C5-amino-modified 2′-deoxyuridine analogues into DNA have found application in nucleic acid labelling, the stabilization of nucleic acid structures, functionalization of nucleic acid aptamers and catalysts, and the investigation of sequence-specific DNA bending. In this study, we describe the physicochemical properties of four different C5-amino-modified 2′-deoxyuridines in which the amino group is tethered to the base via a 3-carbon alkyl, Z- or E-alkenyl or alkynyl linker. Conformational parameters of the nucleosides and their pK(a) values were deduced using (1)H NMR. All of them display the expected anti-conformation of the nucleoside with 2′-endo sugar puckers for the deoxyribose ring. A preference for the cisoid conformation for the Z-alkenyl analogue is found, while the E-alkenyl analogue exists exclusively as its transoid conformation. The pK(a) values range from 10.0 for the analogue with an aliphatic propyl linker to 8.5 for the propargylamino analogue. The analogues have been used for the synthesis of triple-helix forming oligonucleotides (TFOs) in which they replace thymidine in the natural sequence. Oligonucleotides containing the propargylamino analogue display the highest stability especially at low pH, while those containing analogues with propyl and especially Z-alkenyl linkers are destabilized to a great extent. TFOs containing the analogue with the E-alkenyl linker have stability similar to the unmodified structures. The chemical synthesis of TFOs containing the analogue, 5-(3-hydroxyprop-1-ynyl)-2′-deoxyuridine that possesses a neutral but polar side chain show a remarkable stability, which is higher than that of all TFOs containing the alkylamino or alkenylamino analogues and only slightly lower than that of TFOs containing the propargylamino analogue. Both the hydroxyl and propargylamino substitutions impart enhanced triple-helix stability relative to the analogous sequences containing C5-propynyl-2′-deoxyuridine. Furthermore, a similar dependence of stability on pH is found between TFOs containing the hydroxypropynyl modifications and those containing the propargylamino side chains. This suggests that the major factor responsible for stabilizing such triple helices is due to the presence of the alkyne with an attached electronegative group. Oxford University Press 2005 2005-03-03 /pmc/articles/PMC552953/ /pubmed/15745996 http://dx.doi.org/10.1093/nar/gki254 Text en © The Author 2005. Published by Oxford University Press. All rights reserved
spellingShingle Article
Brazier, John A.
Shibata, Takayuki
Townsley, John
Taylor, Brian F.
Frary, Elaine
Williams, Nicholas H.
Williams, David M.
Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation
title Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation
title_full Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation
title_fullStr Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation
title_full_unstemmed Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation
title_short Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation
title_sort amino-functionalized dna: the properties of c5-amino-alkyl substituted 2′-deoxyuridines and their application in dna triplex formation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552953/
https://www.ncbi.nlm.nih.gov/pubmed/15745996
http://dx.doi.org/10.1093/nar/gki254
work_keys_str_mv AT brazierjohna aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation
AT shibatatakayuki aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation
AT townsleyjohn aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation
AT taylorbrianf aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation
AT fraryelaine aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation
AT williamsnicholash aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation
AT williamsdavidm aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation