Cargando…
Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation
The incorporation of C5-amino-modified 2′-deoxyuridine analogues into DNA have found application in nucleic acid labelling, the stabilization of nucleic acid structures, functionalization of nucleic acid aptamers and catalysts, and the investigation of sequence-specific DNA bending. In this study, w...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552953/ https://www.ncbi.nlm.nih.gov/pubmed/15745996 http://dx.doi.org/10.1093/nar/gki254 |
_version_ | 1782122485966176256 |
---|---|
author | Brazier, John A. Shibata, Takayuki Townsley, John Taylor, Brian F. Frary, Elaine Williams, Nicholas H. Williams, David M. |
author_facet | Brazier, John A. Shibata, Takayuki Townsley, John Taylor, Brian F. Frary, Elaine Williams, Nicholas H. Williams, David M. |
author_sort | Brazier, John A. |
collection | PubMed |
description | The incorporation of C5-amino-modified 2′-deoxyuridine analogues into DNA have found application in nucleic acid labelling, the stabilization of nucleic acid structures, functionalization of nucleic acid aptamers and catalysts, and the investigation of sequence-specific DNA bending. In this study, we describe the physicochemical properties of four different C5-amino-modified 2′-deoxyuridines in which the amino group is tethered to the base via a 3-carbon alkyl, Z- or E-alkenyl or alkynyl linker. Conformational parameters of the nucleosides and their pK(a) values were deduced using (1)H NMR. All of them display the expected anti-conformation of the nucleoside with 2′-endo sugar puckers for the deoxyribose ring. A preference for the cisoid conformation for the Z-alkenyl analogue is found, while the E-alkenyl analogue exists exclusively as its transoid conformation. The pK(a) values range from 10.0 for the analogue with an aliphatic propyl linker to 8.5 for the propargylamino analogue. The analogues have been used for the synthesis of triple-helix forming oligonucleotides (TFOs) in which they replace thymidine in the natural sequence. Oligonucleotides containing the propargylamino analogue display the highest stability especially at low pH, while those containing analogues with propyl and especially Z-alkenyl linkers are destabilized to a great extent. TFOs containing the analogue with the E-alkenyl linker have stability similar to the unmodified structures. The chemical synthesis of TFOs containing the analogue, 5-(3-hydroxyprop-1-ynyl)-2′-deoxyuridine that possesses a neutral but polar side chain show a remarkable stability, which is higher than that of all TFOs containing the alkylamino or alkenylamino analogues and only slightly lower than that of TFOs containing the propargylamino analogue. Both the hydroxyl and propargylamino substitutions impart enhanced triple-helix stability relative to the analogous sequences containing C5-propynyl-2′-deoxyuridine. Furthermore, a similar dependence of stability on pH is found between TFOs containing the hydroxypropynyl modifications and those containing the propargylamino side chains. This suggests that the major factor responsible for stabilizing such triple helices is due to the presence of the alkyne with an attached electronegative group. |
format | Text |
id | pubmed-552953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-5529532005-03-10 Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation Brazier, John A. Shibata, Takayuki Townsley, John Taylor, Brian F. Frary, Elaine Williams, Nicholas H. Williams, David M. Nucleic Acids Res Article The incorporation of C5-amino-modified 2′-deoxyuridine analogues into DNA have found application in nucleic acid labelling, the stabilization of nucleic acid structures, functionalization of nucleic acid aptamers and catalysts, and the investigation of sequence-specific DNA bending. In this study, we describe the physicochemical properties of four different C5-amino-modified 2′-deoxyuridines in which the amino group is tethered to the base via a 3-carbon alkyl, Z- or E-alkenyl or alkynyl linker. Conformational parameters of the nucleosides and their pK(a) values were deduced using (1)H NMR. All of them display the expected anti-conformation of the nucleoside with 2′-endo sugar puckers for the deoxyribose ring. A preference for the cisoid conformation for the Z-alkenyl analogue is found, while the E-alkenyl analogue exists exclusively as its transoid conformation. The pK(a) values range from 10.0 for the analogue with an aliphatic propyl linker to 8.5 for the propargylamino analogue. The analogues have been used for the synthesis of triple-helix forming oligonucleotides (TFOs) in which they replace thymidine in the natural sequence. Oligonucleotides containing the propargylamino analogue display the highest stability especially at low pH, while those containing analogues with propyl and especially Z-alkenyl linkers are destabilized to a great extent. TFOs containing the analogue with the E-alkenyl linker have stability similar to the unmodified structures. The chemical synthesis of TFOs containing the analogue, 5-(3-hydroxyprop-1-ynyl)-2′-deoxyuridine that possesses a neutral but polar side chain show a remarkable stability, which is higher than that of all TFOs containing the alkylamino or alkenylamino analogues and only slightly lower than that of TFOs containing the propargylamino analogue. Both the hydroxyl and propargylamino substitutions impart enhanced triple-helix stability relative to the analogous sequences containing C5-propynyl-2′-deoxyuridine. Furthermore, a similar dependence of stability on pH is found between TFOs containing the hydroxypropynyl modifications and those containing the propargylamino side chains. This suggests that the major factor responsible for stabilizing such triple helices is due to the presence of the alkyne with an attached electronegative group. Oxford University Press 2005 2005-03-03 /pmc/articles/PMC552953/ /pubmed/15745996 http://dx.doi.org/10.1093/nar/gki254 Text en © The Author 2005. Published by Oxford University Press. All rights reserved |
spellingShingle | Article Brazier, John A. Shibata, Takayuki Townsley, John Taylor, Brian F. Frary, Elaine Williams, Nicholas H. Williams, David M. Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation |
title | Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation |
title_full | Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation |
title_fullStr | Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation |
title_full_unstemmed | Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation |
title_short | Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2′-deoxyuridines and their application in DNA triplex formation |
title_sort | amino-functionalized dna: the properties of c5-amino-alkyl substituted 2′-deoxyuridines and their application in dna triplex formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552953/ https://www.ncbi.nlm.nih.gov/pubmed/15745996 http://dx.doi.org/10.1093/nar/gki254 |
work_keys_str_mv | AT brazierjohna aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation AT shibatatakayuki aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation AT townsleyjohn aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation AT taylorbrianf aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation AT fraryelaine aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation AT williamsnicholash aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation AT williamsdavidm aminofunctionalizeddnathepropertiesofc5aminoalkylsubstituted2deoxyuridinesandtheirapplicationindnatriplexformation |