Cargando…
Spin pump and probe in lanthanum strontium manganite/platinum bilayers
Ferromagnetic resonance driven spin pumping (FMR-SP) is a novel method to transfer spin current from the ferromagnetic (FM) layer into the adjacent normal metal (NM) layer in an FM/NM bilayer system. Consequently, the spin current could be probed in NM layer via inverse spin Hall effect (ISHE). In s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529535/ https://www.ncbi.nlm.nih.gov/pubmed/28747739 http://dx.doi.org/10.1038/s41598-017-06861-1 |
Sumario: | Ferromagnetic resonance driven spin pumping (FMR-SP) is a novel method to transfer spin current from the ferromagnetic (FM) layer into the adjacent normal metal (NM) layer in an FM/NM bilayer system. Consequently, the spin current could be probed in NM layer via inverse spin Hall effect (ISHE). In spite of numerous ISHE studies on FM/Pt bilayers, La(0.7)Sr(0.3)MnO(3)(LSMO)/Pt system has been less explored and its relevant information about interface property (characterized by spin mixing conductance) and spin-charge conversion efficiency (characterized by spin Hall angle) is a matter of importance for the possible applications of spintronic devices. In this work, the technique of FMR-SP has been applied on two series of LSMO/Pt bilayers with the thickness of each layer being varied. The thickness dependences of ISHE voltage allow to extract the values of spin mixing conductance and spin Hall angle of LSMO/Pt bilayers, which are (1.8 ± 0.4) × 10(19) m(−2) and (1.2 ± 0.1) % respectively. In comparison with other FM/Pt systems, LSMO/Pt has comparable spin current density and spin mixing conductance, regardless its distinct electronic structure from other ferromagnetic metals. |
---|