Cargando…

An atomic carbon source for high temperature molecular beam epitaxy of graphene

We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Albar, J. D., Summerfield, A., Cheng, T. S., Davies, A., Smith, E. F., Khlobystov, A. N., Mellor, C. J., Taniguchi, T., Watanabe, K., Foxon, C. T., Eaves, L., Beton, P. H., Novikov, S. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529545/
https://www.ncbi.nlm.nih.gov/pubmed/28747805
http://dx.doi.org/10.1038/s41598-017-07021-1
_version_ 1783253147132624896
author Albar, J. D.
Summerfield, A.
Cheng, T. S.
Davies, A.
Smith, E. F.
Khlobystov, A. N.
Mellor, C. J.
Taniguchi, T.
Watanabe, K.
Foxon, C. T.
Eaves, L.
Beton, P. H.
Novikov, S. V.
author_facet Albar, J. D.
Summerfield, A.
Cheng, T. S.
Davies, A.
Smith, E. F.
Khlobystov, A. N.
Mellor, C. J.
Taniguchi, T.
Watanabe, K.
Foxon, C. T.
Eaves, L.
Beton, P. H.
Novikov, S. V.
author_sort Albar, J. D.
collection PubMed
description We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.
format Online
Article
Text
id pubmed-5529545
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55295452017-08-02 An atomic carbon source for high temperature molecular beam epitaxy of graphene Albar, J. D. Summerfield, A. Cheng, T. S. Davies, A. Smith, E. F. Khlobystov, A. N. Mellor, C. J. Taniguchi, T. Watanabe, K. Foxon, C. T. Eaves, L. Beton, P. H. Novikov, S. V. Sci Rep Article We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source. Nature Publishing Group UK 2017-07-26 /pmc/articles/PMC5529545/ /pubmed/28747805 http://dx.doi.org/10.1038/s41598-017-07021-1 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Albar, J. D.
Summerfield, A.
Cheng, T. S.
Davies, A.
Smith, E. F.
Khlobystov, A. N.
Mellor, C. J.
Taniguchi, T.
Watanabe, K.
Foxon, C. T.
Eaves, L.
Beton, P. H.
Novikov, S. V.
An atomic carbon source for high temperature molecular beam epitaxy of graphene
title An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_full An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_fullStr An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_full_unstemmed An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_short An atomic carbon source for high temperature molecular beam epitaxy of graphene
title_sort atomic carbon source for high temperature molecular beam epitaxy of graphene
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529545/
https://www.ncbi.nlm.nih.gov/pubmed/28747805
http://dx.doi.org/10.1038/s41598-017-07021-1
work_keys_str_mv AT albarjd anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT summerfielda anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT chengts anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT daviesa anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT smithef anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT khlobystovan anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT mellorcj anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT taniguchit anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT watanabek anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT foxonct anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT eavesl anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT betonph anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT novikovsv anatomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT albarjd atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT summerfielda atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT chengts atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT daviesa atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT smithef atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT khlobystovan atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT mellorcj atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT taniguchit atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT watanabek atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT foxonct atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT eavesl atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT betonph atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene
AT novikovsv atomiccarbonsourceforhightemperaturemolecularbeamepitaxyofgraphene