Cargando…
Human pol II promoter prediction: time series descriptors and machine learning
Although several in silico promoter prediction methods have been developed to date, they are still limited in predictive performance. The limitations are due to the challenge of selecting appropriate features of promoters that distinguish them from non-promoters and the generalization or predictive...
Autores principales: | Gangal, Rajeev, Sharma, Pankaj |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC552959/ https://www.ncbi.nlm.nih.gov/pubmed/15741185 http://dx.doi.org/10.1093/nar/gki271 |
Ejemplares similares
-
Human pol II promoter prediction: time series descriptors and machine learning
por: Gangal, Rajeev, et al.
Publicado: (2005) -
Human POL II promoter prediction: time series descriptors and machine learning
por: Gangal, Rajeev, et al.
Publicado: (2005) -
Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach
por: Anwar, Firoz, et al.
Publicado: (2008) -
Dynamic turnover of paused Pol II complexes at human promoters
por: Erickson, Benjamin, et al.
Publicado: (2018) -
Improvement of Epitope Prediction Using Peptide Sequence Descriptors and Machine Learning
por: Munteanu, Cristian R., et al.
Publicado: (2019)