Cargando…

Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies

The natural phytochemicals present in foods, including anthocyanins, might play a role in attenuating obesity by producing a decrease in weight and adipose tissue. This review focused on current knowledge about anthocyanins' role in obesity and its related comorbidities reported in animal model...

Descripción completa

Detalles Bibliográficos
Autores principales: Azzini, Elena, Giacometti, Jasminka, Russo, Gian Luigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530435/
https://www.ncbi.nlm.nih.gov/pubmed/28785373
http://dx.doi.org/10.1155/2017/2740364
Descripción
Sumario:The natural phytochemicals present in foods, including anthocyanins, might play a role in attenuating obesity by producing a decrease in weight and adipose tissue. This review focused on current knowledge about anthocyanins' role in obesity and its related comorbidities reported in animal models and humans. We summarized their target identification and mechanism of action through several pathways and their final effects on health and well-being. Into consideration of ongoing researches, we highlighted the following key points: a healthy relationship between anthocyanin supplementation and antiobesity effects suffers of the same pros and cons evidenced when the beneficial responses to other phytochemical treatments towards different degenerative diseases have been considered; the different dosage applied in animal versus clinical studies; the complex metabolism and biotransformation to which anthocyanins and phytochemicals are subjected in the intestine and tissues; the possibility that different components present in the supplemented mixtures can interact generating antagonistic, synergistic, or additive effects difficult to predict, and the difference between prevention and therapy. The evolution of the field must seriously consider the need to establish new and adequate cellular and animal models which may, in turn, allow the design of more efficient and prevention-targeted clinical studies.