Cargando…
Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network
We report a novel computational method, RegNetDriver, to identify tumorigenic drivers using the combined effects of coding and non-coding single nucleotide variants, structural variants, and DNA methylation changes in the DNase I hypersensitivity based regulatory network. Integration of multi-omics...
Autores principales: | Dhingra, Priyanka, Martinez-Fundichely, Alexander, Berger, Adeline, Huang, Franklin W., Forbes, Andre Neil, Liu, Eric Minwei, Liu, Deli, Sboner, Andrea, Tamayo, Pablo, Rickman, David S., Rubin, Mark A., Khurana, Ekta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530464/ https://www.ncbi.nlm.nih.gov/pubmed/28750683 http://dx.doi.org/10.1186/s13059-017-1266-3 |
Ejemplares similares
-
CNCDatabase: a database of non-coding cancer drivers
por: Liu, Eric Minwei, et al.
Publicado: (2020) -
Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers
por: Martinez-Fundichely, Alexander, et al.
Publicado: (2022) -
The PTEN pathway in T(regs) is a critical driver of the suppressive tumor microenvironment
por: Sharma, Madhav D., et al.
Publicado: (2015) -
DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
por: Bashashati, Ali, et al.
Publicado: (2012) -
PPARγ is a major driver of the accumulation and phenotype of adipose-tissue T(reg) cells
por: Cipolletta, Daniela, et al.
Publicado: (2012)