Cargando…

One-pot synthesis of block-copolyrotaxanes through controlled rotaxa-polymerization

The aqueous reversible addition fragmentation chain-transfer (RAFT) copolymerization of isoprene and bulky comonomers, an acrylate and an acrylamide in the presence of methylated β-cyclodextrin was employed for the first time to synthesize block-copolyrotaxanes. RAFT polymerizations started from a s...

Descripción completa

Detalles Bibliográficos
Autores principales: Hilschmann, Jessica, Wenz, Gerhard, Kali, Gergely
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530718/
https://www.ncbi.nlm.nih.gov/pubmed/28781696
http://dx.doi.org/10.3762/bjoc.13.127
Descripción
Sumario:The aqueous reversible addition fragmentation chain-transfer (RAFT) copolymerization of isoprene and bulky comonomers, an acrylate and an acrylamide in the presence of methylated β-cyclodextrin was employed for the first time to synthesize block-copolyrotaxanes. RAFT polymerizations started from a symmetrical bifunctional trithiocarbonate and gave rise to triblock-copolymers where the outer polyacrylate/polyacrylamide blocks act as stoppers for the cyclodextrin rings threaded onto the inner polyisoprene block. Statistical copolyrotaxanes were synthesized by RAFT polymerization as well. RAFT polymerization conditions allow control of the composition as well as the sequence of the constituents of the polymer backbone which further effects the CD content and the aqueous solubility of the polyrotaxane.