Cargando…

Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses

Influenza A viruses pose a constant potential threat to human health. In view of the innate antiviral activity of interferons (IFNs) and their potential use as anti-influenza agents, it is important to know whether viral resistance to these antiviral proteins can arise. To examine the likelihood of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ilyushina, Natalia A., Lugovtsev, Vladimir Y., Samsonova, Anastasia P., Sheikh, Faruk G., Bovin, Nicolai V., Donnelly, Raymond P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531537/
https://www.ncbi.nlm.nih.gov/pubmed/28750037
http://dx.doi.org/10.1371/journal.pone.0181999
Descripción
Sumario:Influenza A viruses pose a constant potential threat to human health. In view of the innate antiviral activity of interferons (IFNs) and their potential use as anti-influenza agents, it is important to know whether viral resistance to these antiviral proteins can arise. To examine the likelihood of emergence of IFN-λ1-resistant H1N1 variants, we serially passaged the A/California/04/09 (H1N1) strain in a human lung epithelial cell line (Calu-3) in the presence of increasing concentrations of recombinant IFN-λ1 protein. To monitor changes associated with adaptation of this virus to growth in Calu-3 cells, we also passaged the wild-type virus in the absence of IFN-λ1. Under IFN-λ1 selective pressure, the parental virus developed two neuraminidase (NA) mutations, S79L and K331N, which significantly reduced NA enzyme activity (↓1.4-fold) and sensitivity to IFN-λ1 (↓˃20-fold), respectively. These changes were not associated with a reduction in viral replication levels. Mutants carrying either K331N alone or S79L and K331N together induced weaker phosphorylation of IFN regulatory factor 3 (IRF3), and, as a consequence, much lower expression of the IFN genes (IFNB1, IFNL1 and IFNL2/3) and proteins (IFN-λ1 and IFN-λ2/3). The lower levels of IFN expression correlated with weaker induction of tyrosine-phosphorylated STAT1 and reduced RIG-I protein levels. Our findings demonstrate that influenza viruses can develop increased resistance to the antiviral activity of type III interferons.