Cargando…
Evaluating Fit Indices for Multivariate t-Based Structural Equation Modeling with Data Contamination
In conventional structural equation modeling (SEM), with the presence of even a tiny amount of data contamination due to outliers or influential observations, normal-theory maximum likelihood (ML-Normal) is not efficient and can be severely biased. The multivariate-t-based SEM, which recently got im...
Autores principales: | Lai, Mark H. C., Zhang, Jiaqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532449/ https://www.ncbi.nlm.nih.gov/pubmed/28804470 http://dx.doi.org/10.3389/fpsyg.2017.01286 |
Ejemplares similares
-
Model fit evaluation in multilevel structural equation models
por: Ryu, Ehri
Publicado: (2014) -
The Ethical Use of Fit Indices in Structural Equation Modeling: Recommendations for Psychologists
por: Stone, Bryant M.
Publicado: (2021) -
Evaluation of model fit in nonlinear multilevel structural equation modeling
por: Schermelleh-Engel, Karin, et al.
Publicado: (2014) -
Evaluation of depression and obesity indices based on applications of ANOVA, regression, structural equation modeling and Taguchi algorithm process
por: Mohamed, Nur Anisah, et al.
Publicado: (2023) -
Bifactor exploratory structural equation modeling: A meta-analytic review of model fit
por: Gegenfurtner, Andreas
Publicado: (2022)