Cargando…

A Novel Benzoquinone Compound Isolated from Deep-Sea Hydrothermal Vent Triggers Apoptosis of Tumor Cells

Microorganisms are important sources for screening bioactive natural products. However, natural products from deep-sea microbes have not been extensively explored. In this study, the metabolites of bacteriophage GVE2 -infected (Geobacillus sp. E263 virus) thermophilic bacterium Geobacillus sp. E263,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Chenxi, Sun, Xumei, Jin, Min, Zhang, Xiaobo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532642/
https://www.ncbi.nlm.nih.gov/pubmed/28672882
http://dx.doi.org/10.3390/md15070200
Descripción
Sumario:Microorganisms are important sources for screening bioactive natural products. However, natural products from deep-sea microbes have not been extensively explored. In this study, the metabolites of bacteriophage GVE2 -infected (Geobacillus sp. E263 virus) thermophilic bacterium Geobacillus sp. E263, which was isolated from a deep-sea hydrothermal vent, were characterized. A novel quinoid compound, which had anti-tumor activity, was isolated from the phage-challenged thermophile. The chemical structure analysis showed that this novel quinoid compound was 2-amino-6-hydroxy-[1,4]-benzoquinone. The results indicated that 2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives could trigger apoptosis of gastric cancer cells and breast cancer cells by inducing the accumulation of intracellular reactive oxygen species. Therefore, our study highlighted that the metabolites from the phage-challenged deep-sea microbes might be a kind of promising sources for anti-tumor drug discovery, because of the similarity of metabolic disorder between bacteriophage-infected microbes and tumor cells.