Cargando…

Antibacterial Activity of AI-Hemocidin 2, a Novel N-Terminal Peptide of Hemoglobin Purified from Arca inflata

The continued emergence of antibiotic resistant bacteria in recent years is of great concern. The search for new classes of antibacterial agents has expanded to non-traditional sources such as shellfish. An antibacterial subunit of hemoglobin (Hb-I) was purified from the mantle of Arca inflata by ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chunlei, Zhu, Jianhua, Wang, Yanqing, Chen, Yuyan, Song, Liyan, Zheng, Weiming, Li, Jingjing, Yu, Rongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532647/
https://www.ncbi.nlm.nih.gov/pubmed/28661457
http://dx.doi.org/10.3390/md15070205
Descripción
Sumario:The continued emergence of antibiotic resistant bacteria in recent years is of great concern. The search for new classes of antibacterial agents has expanded to non-traditional sources such as shellfish. An antibacterial subunit of hemoglobin (Hb-I) was purified from the mantle of Arca inflata by phosphate extraction and ion exchange chromatography. A novel antibacterial peptide, AI-hemocidin 2, derived from Hb-I, was discovered using bioinformatics analysis. It displayed antibacterial activity across a broad spectrum of microorganisms, including several Gram-positive and Gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 37.5 to 300 μg/mL, and it exhibited minimal hemolytic or cytotoxic activities. The antibacterial activity of AI-hemocidin 2 was thermostable (25–100 °C) and pH resistant (pH 3–10). The cellular integrity was determined by flow cytometry. AI-hemocidin 2 was capable of permeating the cellular membrane. Changes in the cell morphology were observed with a scanning electron microscope. Circular dichroism spectra suggested that AI-hemocidin 2 formed an α-helix structure in the membrane mimetic environment. The results indicated that the anti-bacterial mechanism for AI-hemocidin 2 occurred through disrupting the cell membrane. AI-hemocidin 2 might be a potential candidate for tackling antibiotic resistant bacteria.