Cargando…

The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa

BACKGROUND: Chorismate mutases of the AroQ homology class are widespread in the Bacteria and the Archaea. Many of these exist as domains that are fused with other aromatic-pathway catalytic domains. Among the monofunctional AroQ proteins, that from Erwinia herbicola was previously shown to have a cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Calhoun, David H, Bonner, Carol A, Gu, Wei, Xie, Gary, Jensen, Roy A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55327/
https://www.ncbi.nlm.nih.gov/pubmed/11532214
Descripción
Sumario:BACKGROUND: Chorismate mutases of the AroQ homology class are widespread in the Bacteria and the Archaea. Many of these exist as domains that are fused with other aromatic-pathway catalytic domains. Among the monofunctional AroQ proteins, that from Erwinia herbicola was previously shown to have a cleavable signal peptide and located in the periplasmic compartment. Whether or not this might be unique to E. herbicola was unknown. RESULTS: The gene coding for the AroQ protein was cloned from Salmonella typhimurium, and the AroQ protein purified from both S. typhimurium and Pseudomonas aeruginosa was shown to have a periplasmic location. The periplasmic chorismate mutases (denoted *AroQ) are shown to be a distinct subclass of AroQ, being about twice the size of cytoplasmic AroQ proteins. The increased size is due to a carboxy-terminal extension of unknown function. In addition, a so-far novel aromatic aminotransferase was shown to be present in the periplasm of P. aeruginosa. CONCLUSIONS: Our analysis has detected a number of additional *aroQ genes. The joint presence of *AroQ, cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment of P. aeruginosa comprises a complete chorismate-to-phenylalanine pathway and accounts for the "hidden overflow pathway" to phenylalanine described previously.