Cargando…

Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization

[Image: see text] While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Dan, Gimenez-Pinto, Vianney, Jimenez, Andrew M., Zhao, Longxi, Jestin, Jacques, Kumar, Sanat K., Kuei, Brooke, Gomez, Enrique D., Prasad, Aditya Shanker, Schadler, Linda S., Khani, Mohammad M., Benicewicz, Brian C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532707/
https://www.ncbi.nlm.nih.gov/pubmed/28776017
http://dx.doi.org/10.1021/acscentsci.7b00157
_version_ 1783253510970671104
author Zhao, Dan
Gimenez-Pinto, Vianney
Jimenez, Andrew M.
Zhao, Longxi
Jestin, Jacques
Kumar, Sanat K.
Kuei, Brooke
Gomez, Enrique D.
Prasad, Aditya Shanker
Schadler, Linda S.
Khani, Mohammad M.
Benicewicz, Brian C.
author_facet Zhao, Dan
Gimenez-Pinto, Vianney
Jimenez, Andrew M.
Zhao, Longxi
Jestin, Jacques
Kumar, Sanat K.
Kuei, Brooke
Gomez, Enrique D.
Prasad, Aditya Shanker
Schadler, Linda S.
Khani, Mohammad M.
Benicewicz, Brian C.
author_sort Zhao, Dan
collection PubMed
description [Image: see text] While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of [Image: see text] (10–100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, [Image: see text] (1–10 μm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young’s modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material’s fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers.
format Online
Article
Text
id pubmed-5532707
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-55327072017-08-03 Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization Zhao, Dan Gimenez-Pinto, Vianney Jimenez, Andrew M. Zhao, Longxi Jestin, Jacques Kumar, Sanat K. Kuei, Brooke Gomez, Enrique D. Prasad, Aditya Shanker Schadler, Linda S. Khani, Mohammad M. Benicewicz, Brian C. ACS Cent Sci [Image: see text] While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of [Image: see text] (10–100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, [Image: see text] (1–10 μm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young’s modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material’s fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers. American Chemical Society 2017-06-07 2017-07-26 /pmc/articles/PMC5532707/ /pubmed/28776017 http://dx.doi.org/10.1021/acscentsci.7b00157 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Zhao, Dan
Gimenez-Pinto, Vianney
Jimenez, Andrew M.
Zhao, Longxi
Jestin, Jacques
Kumar, Sanat K.
Kuei, Brooke
Gomez, Enrique D.
Prasad, Aditya Shanker
Schadler, Linda S.
Khani, Mohammad M.
Benicewicz, Brian C.
Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization
title Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization
title_full Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization
title_fullStr Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization
title_full_unstemmed Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization
title_short Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization
title_sort tunable multiscale nanoparticle ordering by polymer crystallization
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532707/
https://www.ncbi.nlm.nih.gov/pubmed/28776017
http://dx.doi.org/10.1021/acscentsci.7b00157
work_keys_str_mv AT zhaodan tunablemultiscalenanoparticleorderingbypolymercrystallization
AT gimenezpintovianney tunablemultiscalenanoparticleorderingbypolymercrystallization
AT jimenezandrewm tunablemultiscalenanoparticleorderingbypolymercrystallization
AT zhaolongxi tunablemultiscalenanoparticleorderingbypolymercrystallization
AT jestinjacques tunablemultiscalenanoparticleorderingbypolymercrystallization
AT kumarsanatk tunablemultiscalenanoparticleorderingbypolymercrystallization
AT kueibrooke tunablemultiscalenanoparticleorderingbypolymercrystallization
AT gomezenriqued tunablemultiscalenanoparticleorderingbypolymercrystallization
AT prasadadityashanker tunablemultiscalenanoparticleorderingbypolymercrystallization
AT schadlerlindas tunablemultiscalenanoparticleorderingbypolymercrystallization
AT khanimohammadm tunablemultiscalenanoparticleorderingbypolymercrystallization
AT benicewiczbrianc tunablemultiscalenanoparticleorderingbypolymercrystallization