Cargando…
Potent Vasoconstrictor Kisspeptin‐10 Induces Atherosclerotic Plaque Progression and Instability: Reversal by its Receptor GPR54 Antagonist
BACKGROUND: Kisspeptin‐10 (KP‐10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention in relation to pre‐eclampsia. However, it still remains unknown whether KP‐10 could affect atherogenesis. METHODS AND RESULTS: We evaluated the e...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533042/ https://www.ncbi.nlm.nih.gov/pubmed/28411243 http://dx.doi.org/10.1161/JAHA.117.005790 |
Sumario: | BACKGROUND: Kisspeptin‐10 (KP‐10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention in relation to pre‐eclampsia. However, it still remains unknown whether KP‐10 could affect atherogenesis. METHODS AND RESULTS: We evaluated the effects of KP‐10 on human umbilical vein endothelial cells, human monocyte‐derived macrophages, human aortic smooth muscle cells in vitro, and atherosclerotic lesions in apolipoprotein E–deficient (ApoE(−/−)) mice in vivo. KP‐10 significantly increased the adhesion of human monocytes to human umbilical vein endothelial cells, which was significantly inhibited by pretreatment with P234, a GPR54 antagonist. KP‐10 stimulated mRNA expression of tumor necrosis factor‐α, interleukin‐6, monocyte chemotactic protein‐1, intercellular adhesion molecule‐1, vascular adhesion molecule‐1, and E‐selectin in human umbilical vein endothelial cells. KP‐10 significantly enhanced oxidized low‐density lipoprotein–induced foam cell formation associated with upregulation of CD36 and acyl‐CoA:cholesterol acyltransferase‐1 in human monocyte‐derived macrophages. In human aortic smooth muscle cells, KP‐10 significantly suppressed angiotensin II–induced migration and proliferation, but enhanced apoptosis and activities of matrix metalloproteinase (MMP)‐2 and MMP‐9 by upregulation of extracellular signal‐regulated kinase 1 and 2, p38, Bcl‐2‐associated X protein, and caspase‐3. Four‐week‐infusion of KP‐10 into ApoE(−/−) mice significantly accelerated the development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation as well as decreased intraplaque vascular smooth muscle cells contents. Proatherosclerotic effects of endogenous and exogenous KP‐10 were completely canceled by P234 infusion in ApoE(−/−) mice. CONCLUSIONS: Our results suggest that KP‐10 may contribute to accelerate the progression and instability of atheromatous plaques, leading to plaque rupture. The GPR54 antagonist may be useful for prevention and treatment of atherosclerosis. Thus, the KP‐10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases. |
---|