Cargando…

Solvent immersion imprint lithography: A high-performance, semi-automated procedure

We expand upon our recent, fundamental report on solvent immersion imprint lithography (SIIL) and describe a semi-automated and high-performance procedure for prototyping polymer microfluidics and optofluidics. The SIIL procedure minimizes manual intervention through a cost-effective (∼$200) and eas...

Descripción completa

Detalles Bibliográficos
Autores principales: Nemati, S. H., Liyu, D. A., Canul, A. J., Vasdekis, A. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533493/
https://www.ncbi.nlm.nih.gov/pubmed/28798847
http://dx.doi.org/10.1063/1.4979575
Descripción
Sumario:We expand upon our recent, fundamental report on solvent immersion imprint lithography (SIIL) and describe a semi-automated and high-performance procedure for prototyping polymer microfluidics and optofluidics. The SIIL procedure minimizes manual intervention through a cost-effective (∼$200) and easy-to-assemble apparatus. We analyze the procedure's performance specifically for Poly (methyl methacrylate) microsystems and report repeatable polymer imprinting, bonding, and 3D functionalization in less than 5 min, down to 8 μm resolutions and 1:1 aspect ratios. In comparison to commercial approaches, the modified SIIL procedure enables substantial cost reductions, a 100-fold reduction in imprinting force requirements, as well as a more than 10-fold increase in bonding strength. We attribute these advantages to the directed polymer dissolution that strictly localizes at the polymer-solvent interface, as uniquely offered by SIIL. The described procedure opens new desktop prototyping opportunities, particularly for non-expert users performing live-cell imaging, flow-through catalysis, and on-chip gas detection.