Cargando…
A microfluidic device for isolation and characterization of transendothelial migrating cancer cells
Transendothelial migration of cancer cells is a critical stage in cancer, including breast cancer, as the migrating cells are generally believed to be highly metastatic. However, it is still challenging for many existing platforms to achieve a fully covering endothelium and to ensure transendothelia...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533502/ https://www.ncbi.nlm.nih.gov/pubmed/28798840 http://dx.doi.org/10.1063/1.4974012 |
Sumario: | Transendothelial migration of cancer cells is a critical stage in cancer, including breast cancer, as the migrating cells are generally believed to be highly metastatic. However, it is still challenging for many existing platforms to achieve a fully covering endothelium and to ensure transendothelial migration capability of the extracted cancer cells for analyses with high specificity. Here, we report a microfluidic device containing multiple independent cell collection microchambers underneath an embedded endothelium such that the transendothelial-migrated cells can be selectively collected from only the microchambers with full coverage of an endothelial layer. In this work, we first optimize the pore size of a microfabricated supporting membrane for the endothelium formation. We quantify transendothelial migration rates of a malignant human breast cell type (MDA-MB-231) under different shear stress levels. We investigate characteristics of the migrating cells including morphology, cytoskeletal structures, and migration (speed and persistence). Further implementation of this endothelium-embedded microfluidic device can provide important insights into migration and intracellular characteristics related to cancer metastasis and strategies for effective cancer therapy. |
---|