Cargando…

Sub-Second Temporal Integration of Vibro-Tactile Stimuli: Intervals between Adjacent, Weak, and Within-Channel Stimuli Are Underestimated

Tactile estimation of sub-second time is essential for correct recognition of sensory inputs and dexterous manipulation of objects. Despite our intuitive understanding that time is robustly estimated in any situation, tactile sub-second time is altered by, for example, body movement, similar to how...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuroki, Scinob, Yokosaka, Takumi, Watanabe, Junji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534472/
https://www.ncbi.nlm.nih.gov/pubmed/28824486
http://dx.doi.org/10.3389/fpsyg.2017.01295
Descripción
Sumario:Tactile estimation of sub-second time is essential for correct recognition of sensory inputs and dexterous manipulation of objects. Despite our intuitive understanding that time is robustly estimated in any situation, tactile sub-second time is altered by, for example, body movement, similar to how visual time is modulated by eye movement. The effects of simpler factors, such as stimulus location, intensity, and frequency, have also been reported in temporal tasks in other modalities, but their effects on tactile sub-second interval estimation remain obscure. Here, we were interested in whether a perceived short interval presented by tactile stimuli is altered only by changing stimulus features. The perceived interval between a pair of stimuli presented on the same finger apparently became short relative to that on different fingers; that of a weak-intensity pair relative to that of a pair with stronger intensity was decreased; and that of a pair with the same frequency relative to one with different frequencies was underestimated. These findings can be ascribed to errors in encoding temporal relationships: nearby-space/weak-intensity/similar-frequency stimuli presented within a short time difference are likely to be integrated into a single event and lead to relative time compression.