Cargando…

Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method Coupled with Dispersive Solid-Phase Extraction for Simultaneous Quantification of Eight Paralytic Shellfish Poisoning Toxins in Shellfish

In this study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for simultaneous determination of eight paralytic shellfish poisoning (PSP) toxins, including saxitoxin (STX), neosaxitoxin (NEO), gonyautoxins (GTX1–4) and the N-sulfo carbamoyl toxins...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xianli, Zhou, Lei, Tan, Yanglan, Shi, Xizhi, Zhao, Zhiyong, Nie, Dongxia, Zhou, Changyan, Liu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535153/
https://www.ncbi.nlm.nih.gov/pubmed/28661471
http://dx.doi.org/10.3390/toxins9070206
Descripción
Sumario:In this study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for simultaneous determination of eight paralytic shellfish poisoning (PSP) toxins, including saxitoxin (STX), neosaxitoxin (NEO), gonyautoxins (GTX1–4) and the N-sulfo carbamoyl toxins C1 and C2, in sea shellfish. The samples were extracted by acetonitrile/water (80:20, v/v) with 0.1% formic and purified by dispersive solid-phase extraction (dSPE) with C18 silica and acidic alumina. Qualitative and quantitative detection for the target toxins were conducted under the multiple reaction monitoring (MRM) mode by using the positive electrospray ionization (ESI) mode after chromatographic separation on a TSK-gel Amide-80 HILIC column with water and acetonitrile. Matrix-matched calibration was used to compensate for matrix effects. The established method was further validated by determining the linearity (R(2) ≥ 0.9900), average recovery (81.52–116.50%), sensitivity (limits of detection (LODs): 0.33–5.52 μg·kg(−1); limits of quantitation (LOQs): 1.32–11.29 μg·kg(−1)) and precision (relative standard deviation (RSD) ≤ 19.10%). The application of this proposed approach to thirty shellfish samples proved its desirable performance and sufficient capability for simultaneous determination of multiclass PSP toxins in sea foods.