Cargando…
Magnetic Solid-Phase Extraction Using Fe(3)O(4)@SiO(2) Magnetic Nanoparticles Followed by UV-Vis Spectrometry for Determination of Paraquat in Plasma and Urine Samples
A rapid and simple method was optimized and validated for the separation and quantification of paraquat, a frequently used herbicide and a leading cause of fatal poisoning worldwide, at trace levels with UV-Vis spectrophotometry in plasma and urine samples by direct magnetic solid-phase extraction....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535749/ https://www.ncbi.nlm.nih.gov/pubmed/28798883 http://dx.doi.org/10.1155/2017/8704639 |
Sumario: | A rapid and simple method was optimized and validated for the separation and quantification of paraquat, a frequently used herbicide and a leading cause of fatal poisoning worldwide, at trace levels with UV-Vis spectrophotometry in plasma and urine samples by direct magnetic solid-phase extraction. Fe(3)O(4)@SiO(2) nanoparticles (NPs) were used as the magnetic solid-phase extraction agents and the paraquat absorbed on NPs was eluted using NaOH and ascorbic acid. Upon optimization, paraquat could be extracted and concentrated from various samples by 35-fold. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) could reach 15.0–400.0 μg/L, 12.2 μg/L, 0.9987, and 0.65% (n = 5, c = 40.0 μg/L), respectively. The Fe(3)O(4)@SiO(2) NPs could be reused up to five times. The method was successfully applied to the determination of paraquat in urine and plasma at different hemoperfusion numbers in a local hospital for the patient of paraquat poisoning. The experiment result could not only enable immediate medical intervention but also benefit patients' survival. |
---|