Cargando…
Sparse Contribution Feature Selection and Classifiers Optimized by Concave-Convex Variation for HCC Image Recognition
Accurate classification of hepatocellular carcinoma (HCC) image is of great importance in pathology diagnosis and treatment. This paper proposes a concave-convex variation (CCV) method to optimize three classifiers (random forest, support vector machine, and extreme learning machine) for the more ac...
Autores principales: | Pang, Wenbo, Jiang, Huiyan, Li, Siqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535756/ https://www.ncbi.nlm.nih.gov/pubmed/28798937 http://dx.doi.org/10.1155/2017/9718386 |
Ejemplares similares
-
Shape recognition: convexities, concavities and things in between
por: Schmidtmann, Gunnar, et al.
Publicado: (2015) -
Shape and Boundary Similarity Features for Accurate HCC Image Recognition
por: Duan, Xiaoyu, et al.
Publicado: (2017) -
Monotonicity, Concavity, and Convexity of Fractional Derivative of Functions
por: Zhou, Xian-Feng, et al.
Publicado: (2013) -
Trichalcogenasupersumanenes and its concave-convex supramolecular assembly with fullerenes
por: Sun, Yixun, et al.
Publicado: (2023) -
Concave-convex Reaming of Intercalary Allograft: 1-year Clinical Outcomes
por: Bastien, Nathan, et al.
Publicado: (2021)