Cargando…
Functional Implications of MicroRNAs in Crohn’s Disease Revealed by Integrating MicroRNA and Messenger RNA Expression Profiling
Crohn’s disease (CD) is a debilitating inflammatory bowel disease (IBD) that emerges due to the influence of genetic and environmental factors. microRNAs (miRNAs) have been identified in the tissue and sera of IBD patients and may play an important role in the induction of IBD. Our study aimed to id...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536068/ https://www.ncbi.nlm.nih.gov/pubmed/28726756 http://dx.doi.org/10.3390/ijms18071580 |
Sumario: | Crohn’s disease (CD) is a debilitating inflammatory bowel disease (IBD) that emerges due to the influence of genetic and environmental factors. microRNAs (miRNAs) have been identified in the tissue and sera of IBD patients and may play an important role in the induction of IBD. Our study aimed to identify differentially expressed miRNAs and miRNAs with the ability to alter transcriptome activity by comparing inflamed tissue samples with their non-inflamed counterparts. We studied changes in miRNA–mRNA interactions associated with CD by examining their differential co-expression relative to normal mucosa from the same patients. Correlation changes between the two conditions were incorporated into scores of predefined gene sets to identify biological processes with altered miRNA-mediated control. Our study identified 28 miRNAs differentially expressed (p-values < 0.01), of which 14 are up-regulated. Notably, our differential co-expression analysis highlights microRNAs (i.e., miR-4284, miR-3194 and miR-21) that have known functional interactions with key mechanisms implicated in IBD. Most of these miRNAs cannot be detected by differential expression analysis that do not take into account miRNA–mRNA interactions. The identification of differential miRNA–mRNA co-expression patterns will facilitate the investigation of the miRNA-mediated molecular mechanisms underlying CD pathogenesis and could suggest novel drug targets for validation. |
---|