Cargando…
ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia
BACKGROUND: Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) effic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536352/ https://www.ncbi.nlm.nih.gov/pubmed/28759636 http://dx.doi.org/10.1371/journal.pone.0181654 |
_version_ | 1783254002422513664 |
---|---|
author | Fisher, Carl J. Niu, Carolyn Foltz, Warren Chen, Yonghong Sidorova-Darmos, Elena Eubanks, James H. Lilge, Lothar |
author_facet | Fisher, Carl J. Niu, Carolyn Foltz, Warren Chen, Yonghong Sidorova-Darmos, Elena Eubanks, James H. Lilge, Lothar |
author_sort | Fisher, Carl J. |
collection | PubMed |
description | BACKGROUND: Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protecting normal neuronal structures. METHODS: Photosensitizer accumulation and PDT efficacy in vitro were quantified in various glioma cell lines, primary rat neurons, and astrocytes. In vivo studies were carried out in healthy brain and RG2 glioma of naïve Fischer rats. Hypothermia was induced at 1 hour pre- to 2 hours post-PDT, with ALA-PpIX accumulation and PDT treatments effects on tumor and normal brain PDT quantified using optical spectroscopy, histology, immunohistochemistry, MRI, and survival studies, respectively. FINDINGS: In vitro studies demonstrated significantly improved post-PDT survival in primary rat neuronal cells. Rat in vivo studies confirmed a neuroprotective effect to hypothermia following PpIX mediated PDT by T(2) mapping at day 10, reflecting edema/inflammation volume reduction. Mild hypothermia increased PpIX fluorescence in tumors five-fold, and the median post-PDT rat survival time (8.5 days normothermia; 14 days hypothermia). Histology and immunohistochemistry show close to complete cellular protection in normal brain structures under hypothermia. CONCLUSIONS: The benefits of hypothermia on both normal neuronal tissue as well as increased PpIX fluorescence and RG2 induced rat survival strongly suggest a role for hypothermia in photonics-based surgical techniques, and that a hypothermic intervention could lead to considerable patient outcome improvements. |
format | Online Article Text |
id | pubmed-5536352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55363522017-08-07 ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia Fisher, Carl J. Niu, Carolyn Foltz, Warren Chen, Yonghong Sidorova-Darmos, Elena Eubanks, James H. Lilge, Lothar PLoS One Research Article BACKGROUND: Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protecting normal neuronal structures. METHODS: Photosensitizer accumulation and PDT efficacy in vitro were quantified in various glioma cell lines, primary rat neurons, and astrocytes. In vivo studies were carried out in healthy brain and RG2 glioma of naïve Fischer rats. Hypothermia was induced at 1 hour pre- to 2 hours post-PDT, with ALA-PpIX accumulation and PDT treatments effects on tumor and normal brain PDT quantified using optical spectroscopy, histology, immunohistochemistry, MRI, and survival studies, respectively. FINDINGS: In vitro studies demonstrated significantly improved post-PDT survival in primary rat neuronal cells. Rat in vivo studies confirmed a neuroprotective effect to hypothermia following PpIX mediated PDT by T(2) mapping at day 10, reflecting edema/inflammation volume reduction. Mild hypothermia increased PpIX fluorescence in tumors five-fold, and the median post-PDT rat survival time (8.5 days normothermia; 14 days hypothermia). Histology and immunohistochemistry show close to complete cellular protection in normal brain structures under hypothermia. CONCLUSIONS: The benefits of hypothermia on both normal neuronal tissue as well as increased PpIX fluorescence and RG2 induced rat survival strongly suggest a role for hypothermia in photonics-based surgical techniques, and that a hypothermic intervention could lead to considerable patient outcome improvements. Public Library of Science 2017-07-31 /pmc/articles/PMC5536352/ /pubmed/28759636 http://dx.doi.org/10.1371/journal.pone.0181654 Text en © 2017 Fisher et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fisher, Carl J. Niu, Carolyn Foltz, Warren Chen, Yonghong Sidorova-Darmos, Elena Eubanks, James H. Lilge, Lothar ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia |
title | ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia |
title_full | ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia |
title_fullStr | ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia |
title_full_unstemmed | ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia |
title_short | ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia |
title_sort | ala-ppix mediated photodynamic therapy of malignant gliomas augmented by hypothermia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536352/ https://www.ncbi.nlm.nih.gov/pubmed/28759636 http://dx.doi.org/10.1371/journal.pone.0181654 |
work_keys_str_mv | AT fishercarlj alappixmediatedphotodynamictherapyofmalignantgliomasaugmentedbyhypothermia AT niucarolyn alappixmediatedphotodynamictherapyofmalignantgliomasaugmentedbyhypothermia AT foltzwarren alappixmediatedphotodynamictherapyofmalignantgliomasaugmentedbyhypothermia AT chenyonghong alappixmediatedphotodynamictherapyofmalignantgliomasaugmentedbyhypothermia AT sidorovadarmoselena alappixmediatedphotodynamictherapyofmalignantgliomasaugmentedbyhypothermia AT eubanksjamesh alappixmediatedphotodynamictherapyofmalignantgliomasaugmentedbyhypothermia AT lilgelothar alappixmediatedphotodynamictherapyofmalignantgliomasaugmentedbyhypothermia |