Cargando…
Anti- trachea inflammatory effects of diosgenin from Dioscorea nipponica through interactions with glucocorticoid receptor α
Asthma is a heterogeneous disease characterized by symptoms of chronic inflammation and airway structural and functional changes. It affects about 300 million people worldwide and causes 250 000 deaths annually, but its symptoms can be greatly relieved by regular use of inhaled glucocorticoids (GCs)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536614/ https://www.ncbi.nlm.nih.gov/pubmed/27913746 http://dx.doi.org/10.1177/0300060516676724 |
Sumario: | Asthma is a heterogeneous disease characterized by symptoms of chronic inflammation and airway structural and functional changes. It affects about 300 million people worldwide and causes 250 000 deaths annually, but its symptoms can be greatly relieved by regular use of inhaled glucocorticoids (GCs). GCs exert their function through interacting with glucocorticoid receptors (GRs). Diosgenin is a naturally occurring steroidal saponin abundantly present in many medicinal plants, including Dioscorea nipponica, which shares a similar steroidal structure with GC. In this study, ovalbumin (OVA)-induced asthmatic mice and primary tracheal epithelial cells (TECs) were used as research models. ELISAs were applied to measure the secretion of TNF-α, IL-1β, and IL-6, while quantitative PCR and western blotting were applied to evaluate expression of GRs SLPI, TTP, GILZ, MKP-1, and NF-κB. Our data demonstrated that diosgenin suppressed the secretion of TNF-α, IL-1β, and IL-6 by enhancing the expression of GRs, SLPI, GILZ, and MKP-1, and inhibiting the expression of HSP70. These data provide some evidence on the molecular mechanism of diosgenin, which might facilitate its clinical applications. |
---|