Cargando…
Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae
Effective vaccines are urgently needed to combat gonorrhea, a common sexually transmitted bacterial infection, for which treatment options are diminishing due to rapid emergence of antibiotic resistance. We have used a rational approach to the development of gonorrhea vaccines, and genetically engin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537070/ https://www.ncbi.nlm.nih.gov/pubmed/28781959 http://dx.doi.org/10.1002/2211-5463.12267 |
_version_ | 1783254101342027776 |
---|---|
author | Wang, Liqin Xing, Daniel Le Van, Adriana Jerse, Ann E. Wang, Shuishu |
author_facet | Wang, Liqin Xing, Daniel Le Van, Adriana Jerse, Ann E. Wang, Shuishu |
author_sort | Wang, Liqin |
collection | PubMed |
description | Effective vaccines are urgently needed to combat gonorrhea, a common sexually transmitted bacterial infection, for which treatment options are diminishing due to rapid emergence of antibiotic resistance. We have used a rational approach to the development of gonorrhea vaccines, and genetically engineered nanoparticles to present antigenic peptides of Neisseria gonorrhoeae, the causative agent of gonorrhea. We hypothesized that the ferritin nanocage could be used as a platform to display an ordered array of N. gonorrhoeae antigenic peptides on its surface. MtrE, the outer membrane channel of the highly conserved gonococcal MtrCDE active efflux pump, is an attractive vaccine target due to its importance in protecting N. gonorrhoeae from host innate effectors and antibiotic resistance. Using computational approaches, we designed constructs that expressed chimeric proteins of the Helicobacter pylori ferritin and antigenic peptides that correspond to the two surface‐exposed loops of N. gonorrhoeae MtrE. The peptides were inserted at the N terminus or in a surface‐exposed ferritin loop between helices αA and αB. Crystal structures of the chimeric proteins revealed that the proteins assembled correctly into a 24‐mer nanocage structure. Although the inserted N. gonorrhoeae peptides were disordered, it was clear that they were displayed on the nanocage surface, but with multiple conformations. Our results confirmed that the ferritin nanoparticle is a robust platform to present antigenic peptides and therefore an ideal system for rational design of immunogens. |
format | Online Article Text |
id | pubmed-5537070 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55370702017-08-04 Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae Wang, Liqin Xing, Daniel Le Van, Adriana Jerse, Ann E. Wang, Shuishu FEBS Open Bio Research Articles Effective vaccines are urgently needed to combat gonorrhea, a common sexually transmitted bacterial infection, for which treatment options are diminishing due to rapid emergence of antibiotic resistance. We have used a rational approach to the development of gonorrhea vaccines, and genetically engineered nanoparticles to present antigenic peptides of Neisseria gonorrhoeae, the causative agent of gonorrhea. We hypothesized that the ferritin nanocage could be used as a platform to display an ordered array of N. gonorrhoeae antigenic peptides on its surface. MtrE, the outer membrane channel of the highly conserved gonococcal MtrCDE active efflux pump, is an attractive vaccine target due to its importance in protecting N. gonorrhoeae from host innate effectors and antibiotic resistance. Using computational approaches, we designed constructs that expressed chimeric proteins of the Helicobacter pylori ferritin and antigenic peptides that correspond to the two surface‐exposed loops of N. gonorrhoeae MtrE. The peptides were inserted at the N terminus or in a surface‐exposed ferritin loop between helices αA and αB. Crystal structures of the chimeric proteins revealed that the proteins assembled correctly into a 24‐mer nanocage structure. Although the inserted N. gonorrhoeae peptides were disordered, it was clear that they were displayed on the nanocage surface, but with multiple conformations. Our results confirmed that the ferritin nanoparticle is a robust platform to present antigenic peptides and therefore an ideal system for rational design of immunogens. John Wiley and Sons Inc. 2017-07-24 /pmc/articles/PMC5537070/ /pubmed/28781959 http://dx.doi.org/10.1002/2211-5463.12267 Text en © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Wang, Liqin Xing, Daniel Le Van, Adriana Jerse, Ann E. Wang, Shuishu Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae |
title | Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae
|
title_full | Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae
|
title_fullStr | Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae
|
title_full_unstemmed | Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae
|
title_short | Structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae
|
title_sort | structure‐based design of ferritin nanoparticle immunogens displaying antigenic loops of neisseria gonorrhoeae |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537070/ https://www.ncbi.nlm.nih.gov/pubmed/28781959 http://dx.doi.org/10.1002/2211-5463.12267 |
work_keys_str_mv | AT wangliqin structurebaseddesignofferritinnanoparticleimmunogensdisplayingantigenicloopsofneisseriagonorrhoeae AT xingdaniel structurebaseddesignofferritinnanoparticleimmunogensdisplayingantigenicloopsofneisseriagonorrhoeae AT levanadriana structurebaseddesignofferritinnanoparticleimmunogensdisplayingantigenicloopsofneisseriagonorrhoeae AT jerseanne structurebaseddesignofferritinnanoparticleimmunogensdisplayingantigenicloopsofneisseriagonorrhoeae AT wangshuishu structurebaseddesignofferritinnanoparticleimmunogensdisplayingantigenicloopsofneisseriagonorrhoeae |