Cargando…
Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys
Deep learning techniques are being rapidly applied to medical imaging tasks—from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requi...
Autores principales: | Kline, Timothy L., Korfiatis, Panagiotis, Edwards, Marie E., Blais, Jaime D., Czerwiec, Frank S., Harris, Peter C., King, Bernard F., Torres, Vicente E., Erickson, Bradley J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537093/ https://www.ncbi.nlm.nih.gov/pubmed/28550374 http://dx.doi.org/10.1007/s10278-017-9978-1 |
Ejemplares similares
-
Standardizing total kidney volume measurements for clinical trials of autosomal dominant polycystic kidney disease
por: Edwards, Marie E, et al.
Publicado: (2018) -
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
por: Korfiatis, Panagiotis, et al.
Publicado: (2016) -
Semantic Instance Segmentation of Kidney Cysts in MR Images: A Fully Automated 3D Approach Developed Through Active Learning
por: Gregory, Adriana V., et al.
Publicado: (2021) -
Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging
por: Akkus, Zeynettin, et al.
Publicado: (2015) -
AI in the Loop: functionalizing fold performance disagreement to monitor automated medical image segmentation workflows
por: Gottlich, Harrison C., et al.
Publicado: (2023)