Cargando…
Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities
The goal of this study is to evaluate the efficacy of deep convolutional neural networks (DCNNs) in differentiating subtle, intermediate, and more obvious image differences in radiography. Three different datasets were created, which included presence/absence of the endotracheal (ET) tube (n = 300),...
Autor principal: | Lakhani, Paras |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537094/ https://www.ncbi.nlm.nih.gov/pubmed/28600640 http://dx.doi.org/10.1007/s10278-017-9980-7 |
Ejemplares similares
-
Position Classification of the Endotracheal Tube with Automatic Segmentation of the Trachea and the Tube on Plain Chest Radiography Using Deep Convolutional Neural Network
por: Jung, Heui Chul, et al.
Publicado: (2022) -
Topology optimization search of deep convolution neural networks for CT and X-ray image classification
por: Louati, Hassen, et al.
Publicado: (2022) -
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021) -
A convolutional attention mapping deep neural network for classification and localization of cardiomegaly on chest X-rays
por: Innat, Mohammed, et al.
Publicado: (2023) -
Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification
por: Rammuni Silva, Ravidu Suien, et al.
Publicado: (2022)