Cargando…
Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis: Initial Experience in Liver Lesions
We propose a computerized framework that, given a region of interest (ROI) circumscribing a lesion, not only predicts radiological observations related to the lesion characteristics with 83.2% average prediction accuracy but also derives explicit association between low-level imaging features and hi...
Autores principales: | Banerjee, Imon, Beaulieu, Christopher F., Rubin, Daniel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537098/ https://www.ncbi.nlm.nih.gov/pubmed/28639186 http://dx.doi.org/10.1007/s10278-017-9987-0 |
Ejemplares similares
-
Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm
por: Bozkurt, Selen, et al.
Publicado: (2019) -
HYPERVASCULAR LIVER LESIONS IN RADIOLOGICALLY NORMAL LIVER
por: AMICO, Enio Campos, et al.
Publicado: (2017) -
Weakly supervised temporal model for prediction of breast cancer distant recurrence
por: Sanyal, Josh, et al.
Publicado: (2021) -
Diffuse Infiltrative Lesion of the Breast: Clinical and Radiologic Features
por: An, Yeong Yi, et al.
Publicado: (2011) -
Columnar cell lesions with atypia: radiological features and surgical outcome
por: Canavan, F, et al.
Publicado: (2008)