Cargando…
Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis
Pretreatment risk stratification is key for personalized medicine. While many physicians rely on an “eyeball test” to assess whether patients will tolerate major surgery or chemotherapy, “eyeballing” is inherently subjective and difficult to quantify. The concept of morphometric age derived from cro...
Autores principales: | Lee, Hyunkwang, Troschel, Fabian M., Tajmir, Shahein, Fuchs, Georg, Mario, Julia, Fintelmann, Florian J., Do, Synho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537099/ https://www.ncbi.nlm.nih.gov/pubmed/28653123 http://dx.doi.org/10.1007/s10278-017-9988-z |
Ejemplares similares
-
Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction
por: Lee, Hyunkwang, et al.
Publicado: (2019) -
Beyond Human Perception: Sexual Dimorphism in Hand and Wrist Radiographs Is Discernible by a Deep Learning Model
por: Yune, Sehyo, et al.
Publicado: (2018) -
Fully Automated Deep Learning System for Bone Age Assessment
por: Lee, Hyunkwang, et al.
Publicado: (2017) -
Sarcopenia on preoperative chest computed tomography predicts cancer‐specific and all‐cause mortality following pneumonectomy for lung cancer: A multicenter analysis
por: Troschel, Fabian M., et al.
Publicado: (2021) -
Artificial intelligence in glaucoma: posterior segment optical coherence tomography
por: Gutierrez, Alfredo, et al.
Publicado: (2023)