Cargando…

Load-separation curves for the contact of self-affine rough surfaces

There are two main approximate theories in the contact of rough solids: Greenwood-Williamson asperity theories (GW) and Persson theories. Neither of them has been fully assessed so far with respect to load-separation curves. Focusing on the most important case of low fractal dimension (D(f) = 2.2) w...

Descripción completa

Detalles Bibliográficos
Autores principales: Papangelo, Antonio, Hoffmann, Norbert, Ciavarella, Michele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537336/
https://www.ncbi.nlm.nih.gov/pubmed/28761122
http://dx.doi.org/10.1038/s41598-017-07234-4
Descripción
Sumario:There are two main approximate theories in the contact of rough solids: Greenwood-Williamson asperity theories (GW) and Persson theories. Neither of them has been fully assessed so far with respect to load-separation curves. Focusing on the most important case of low fractal dimension (D(f) = 2.2) with extensive numerical studies we find that: (i) Persson’s theory describes well the regime of intermediate pressures/contact area, but requires significant corrective factors: the latter depend also on upper wavevector cutoff of the roughness; hence, (ii) Persson’s theory does not predict the correct functional dependence on magnification; (iii) asperity theories in the discrete version even neglecting interaction effects are more appropriate in the range of relatively large separations, also to take into consideration of the large scatter in actual realization of the surface.