Cargando…
Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice
Hyperhomocysteinemia (HHcy) has been shown to promote vascular inflammation and atherosclerosis, but the underlying mechanisms remain largely unknown. The NLRP3 inflammasome has been identified as the cellular machinery responsible for activation of inflammatory processes. In this study, we hypothes...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537437/ https://www.ncbi.nlm.nih.gov/pubmed/28394319 http://dx.doi.org/10.1038/labinvest.2017.30 |
_version_ | 1783254177518977024 |
---|---|
author | Wang, Renqing Wang, Yiqin Mu, Nana Lou, Xiaoying Li, Weixuan Chen, Yanming Fan, Dong Tan, Hongmei |
author_facet | Wang, Renqing Wang, Yiqin Mu, Nana Lou, Xiaoying Li, Weixuan Chen, Yanming Fan, Dong Tan, Hongmei |
author_sort | Wang, Renqing |
collection | PubMed |
description | Hyperhomocysteinemia (HHcy) has been shown to promote vascular inflammation and atherosclerosis, but the underlying mechanisms remain largely unknown. The NLRP3 inflammasome has been identified as the cellular machinery responsible for activation of inflammatory processes. In this study, we hypothesized that the activation of NLRP3 inflammasomes contributes to HHcy-induced inflammation and atherosclerosis. ApoE(−/−) mice were fed regular chow, high-fat (HF) diet, or HF plus high methionine diet to induce HHcy. To assess the role of NLRP3 inflammasomes in HHcy-aggravated atherosclerosis, NLRP3 shRNA viral suspension was injected via tail vein to knock down the NLRP3 gene. Increased plasma levels of IL-1β and IL-18, aggravated macrophage infiltration into atherosclerotic lesions, and accelerated development of atherosclerosis were detected in HHcy mice as compared with control mice, and were associated with the activation of NLRP3 inflammasomes. Silencing the NLRP3 gene significantly suppressed NLRP3 inflammasome activation, reduced plasma levels of proinflammatory cytokines, attenuated macrophage infiltration and improved HHcy-induced atherosclerosis. We also examined the effect of homocysteine (Hcy) on NLRP3 inflammasome activation in THP-1-differentiated macrophages in the presence or absence of NLRP3 siRNA or the caspase-1 inhibitor Z-WEHD-FMK. We found that Hcy activated NLRP3 inflammasomes and promoted subsequent production of IL-1β and IL-18 in macrophages, which were blocked by NLRP3 gene silencing or Z-WEHD-FMK. As reactive oxygen species (ROS) may have a central role in NLRP3 inflammasome activation, we next investigated whether antioxidant N-acetyl-l-cysteine (NAC) prevented Hcy-induced NLRP3 inflammasome activation in macrophages. We found Hcy-induced NLRP3 inflammasome activation was abolished by NAC. Treatment with NAC in HHcy mice also suppressed NLRP3 inflammasome activation and improved HHcy-induced atherosclerosis. These data suggest that the activation of NLRP3 inflammasomes contributes to HHcy-aggravated inflammation and atherosclerosis in apoE(−/−) mice. Hcy activates NLRP3 inflammasomes in ROS-dependent pathway in macrophages. These results may have implication for the treatment of HHcy-associated cardiovascular diseases. |
format | Online Article Text |
id | pubmed-5537437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-55374372017-08-07 Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice Wang, Renqing Wang, Yiqin Mu, Nana Lou, Xiaoying Li, Weixuan Chen, Yanming Fan, Dong Tan, Hongmei Lab Invest Research Article Hyperhomocysteinemia (HHcy) has been shown to promote vascular inflammation and atherosclerosis, but the underlying mechanisms remain largely unknown. The NLRP3 inflammasome has been identified as the cellular machinery responsible for activation of inflammatory processes. In this study, we hypothesized that the activation of NLRP3 inflammasomes contributes to HHcy-induced inflammation and atherosclerosis. ApoE(−/−) mice were fed regular chow, high-fat (HF) diet, or HF plus high methionine diet to induce HHcy. To assess the role of NLRP3 inflammasomes in HHcy-aggravated atherosclerosis, NLRP3 shRNA viral suspension was injected via tail vein to knock down the NLRP3 gene. Increased plasma levels of IL-1β and IL-18, aggravated macrophage infiltration into atherosclerotic lesions, and accelerated development of atherosclerosis were detected in HHcy mice as compared with control mice, and were associated with the activation of NLRP3 inflammasomes. Silencing the NLRP3 gene significantly suppressed NLRP3 inflammasome activation, reduced plasma levels of proinflammatory cytokines, attenuated macrophage infiltration and improved HHcy-induced atherosclerosis. We also examined the effect of homocysteine (Hcy) on NLRP3 inflammasome activation in THP-1-differentiated macrophages in the presence or absence of NLRP3 siRNA or the caspase-1 inhibitor Z-WEHD-FMK. We found that Hcy activated NLRP3 inflammasomes and promoted subsequent production of IL-1β and IL-18 in macrophages, which were blocked by NLRP3 gene silencing or Z-WEHD-FMK. As reactive oxygen species (ROS) may have a central role in NLRP3 inflammasome activation, we next investigated whether antioxidant N-acetyl-l-cysteine (NAC) prevented Hcy-induced NLRP3 inflammasome activation in macrophages. We found Hcy-induced NLRP3 inflammasome activation was abolished by NAC. Treatment with NAC in HHcy mice also suppressed NLRP3 inflammasome activation and improved HHcy-induced atherosclerosis. These data suggest that the activation of NLRP3 inflammasomes contributes to HHcy-aggravated inflammation and atherosclerosis in apoE(−/−) mice. Hcy activates NLRP3 inflammasomes in ROS-dependent pathway in macrophages. These results may have implication for the treatment of HHcy-associated cardiovascular diseases. Nature Publishing Group 2017-08 2017-04-10 /pmc/articles/PMC5537437/ /pubmed/28394319 http://dx.doi.org/10.1038/labinvest.2017.30 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by-nc-sa/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ |
spellingShingle | Research Article Wang, Renqing Wang, Yiqin Mu, Nana Lou, Xiaoying Li, Weixuan Chen, Yanming Fan, Dong Tan, Hongmei Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice |
title | Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice |
title_full | Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice |
title_fullStr | Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice |
title_full_unstemmed | Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice |
title_short | Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice |
title_sort | activation of nlrp3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoe-deficient mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537437/ https://www.ncbi.nlm.nih.gov/pubmed/28394319 http://dx.doi.org/10.1038/labinvest.2017.30 |
work_keys_str_mv | AT wangrenqing activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice AT wangyiqin activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice AT munana activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice AT louxiaoying activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice AT liweixuan activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice AT chenyanming activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice AT fandong activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice AT tanhongmei activationofnlrp3inflammasomescontributestohyperhomocysteinemiaaggravatedinflammationandatherosclerosisinapoedeficientmice |