Cargando…
Electronic Structures of LNA Phosphorothioate Oligonucleotides
Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM) calculations and chromatography experiments on locked nucleic acid (LNA) phosphorothioate (PS) oligonucleotides. iso-potential electrostatic surfaces are essen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537454/ https://www.ncbi.nlm.nih.gov/pubmed/28918042 http://dx.doi.org/10.1016/j.omtn.2017.05.011 |
_version_ | 1783254181312724992 |
---|---|
author | Bohr, Henrik G. Shim, Irene Stein, Cy Ørum, Henrik Hansen, Henrik F. Koch, Troels |
author_facet | Bohr, Henrik G. Shim, Irene Stein, Cy Ørum, Henrik Hansen, Henrik F. Koch, Troels |
author_sort | Bohr, Henrik G. |
collection | PubMed |
description | Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM) calculations and chromatography experiments on locked nucleic acid (LNA) phosphorothioate (PS) oligonucleotides. iso-potential electrostatic surfaces are essential in this study and have been calculated from the wave functions derived from the QM calculations that provide binding information and other properties of these molecules. The QM calculations give details of the electronic structures in terms of e.g., energy and bonding, which make them distinguish or differentiate between the individual PS diastereoisomers determined by the position of sulfur atoms. Rules are derived from the electronic calculations of these molecules and include the effects of the phosphorothioate chirality and formation of electrostatic potential surfaces. Physical and electrochemical descriptors of the PS oligonucleotides are compared to the experiments in which chiral states on these molecules can be distinguished. The calculations demonstrate that electronic structure, electrostatic potential, and topology are highly sensitive to single PS configuration changes and can give a lead to understanding the activity of the molecules. |
format | Online Article Text |
id | pubmed-5537454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-55374542017-08-08 Electronic Structures of LNA Phosphorothioate Oligonucleotides Bohr, Henrik G. Shim, Irene Stein, Cy Ørum, Henrik Hansen, Henrik F. Koch, Troels Mol Ther Nucleic Acids Original Article Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM) calculations and chromatography experiments on locked nucleic acid (LNA) phosphorothioate (PS) oligonucleotides. iso-potential electrostatic surfaces are essential in this study and have been calculated from the wave functions derived from the QM calculations that provide binding information and other properties of these molecules. The QM calculations give details of the electronic structures in terms of e.g., energy and bonding, which make them distinguish or differentiate between the individual PS diastereoisomers determined by the position of sulfur atoms. Rules are derived from the electronic calculations of these molecules and include the effects of the phosphorothioate chirality and formation of electrostatic potential surfaces. Physical and electrochemical descriptors of the PS oligonucleotides are compared to the experiments in which chiral states on these molecules can be distinguished. The calculations demonstrate that electronic structure, electrostatic potential, and topology are highly sensitive to single PS configuration changes and can give a lead to understanding the activity of the molecules. American Society of Gene & Cell Therapy 2017-06-01 /pmc/articles/PMC5537454/ /pubmed/28918042 http://dx.doi.org/10.1016/j.omtn.2017.05.011 Text en © 2017. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Bohr, Henrik G. Shim, Irene Stein, Cy Ørum, Henrik Hansen, Henrik F. Koch, Troels Electronic Structures of LNA Phosphorothioate Oligonucleotides |
title | Electronic Structures of LNA Phosphorothioate Oligonucleotides |
title_full | Electronic Structures of LNA Phosphorothioate Oligonucleotides |
title_fullStr | Electronic Structures of LNA Phosphorothioate Oligonucleotides |
title_full_unstemmed | Electronic Structures of LNA Phosphorothioate Oligonucleotides |
title_short | Electronic Structures of LNA Phosphorothioate Oligonucleotides |
title_sort | electronic structures of lna phosphorothioate oligonucleotides |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537454/ https://www.ncbi.nlm.nih.gov/pubmed/28918042 http://dx.doi.org/10.1016/j.omtn.2017.05.011 |
work_keys_str_mv | AT bohrhenrikg electronicstructuresoflnaphosphorothioateoligonucleotides AT shimirene electronicstructuresoflnaphosphorothioateoligonucleotides AT steincy electronicstructuresoflnaphosphorothioateoligonucleotides AT ørumhenrik electronicstructuresoflnaphosphorothioateoligonucleotides AT hansenhenrikf electronicstructuresoflnaphosphorothioateoligonucleotides AT kochtroels electronicstructuresoflnaphosphorothioateoligonucleotides |