Cargando…

Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons

An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Makhijani, Kalpana, Alexander, Brandy, Rao, Deepti, Petraki, Sophia, Herboso, Leire, Kukar, Katelyn, Batool, Itrat, Wachner, Stephanie, Gold, Katrina S., Wong, Corinna, O’Connor, Michael B., Brückner, Katja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537569/
https://www.ncbi.nlm.nih.gov/pubmed/28748922
http://dx.doi.org/10.1038/ncomms15990
Descripción
Sumario:An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-β, a TGF-β family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-β has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined.