Cargando…

Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance

[Image: see text] Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with...

Descripción completa

Detalles Bibliográficos
Autores principales: Rose, Jonas C., Cámara-Torres, María, Rahimi, Khosrow, Köhler, Jens, Möller, Martin, De Laporte, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537692/
https://www.ncbi.nlm.nih.gov/pubmed/28326790
http://dx.doi.org/10.1021/acs.nanolett.7b01123
_version_ 1783254231046684672
author Rose, Jonas C.
Cámara-Torres, María
Rahimi, Khosrow
Köhler, Jens
Möller, Martin
De Laporte, Laura
author_facet Rose, Jonas C.
Cámara-Torres, María
Rahimi, Khosrow
Köhler, Jens
Möller, Martin
De Laporte, Laura
author_sort Rose, Jonas C.
collection PubMed
description [Image: see text] Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.
format Online
Article
Text
id pubmed-5537692
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-55376922017-08-03 Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance Rose, Jonas C. Cámara-Torres, María Rahimi, Khosrow Köhler, Jens Möller, Martin De Laporte, Laura Nano Lett [Image: see text] Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury. American Chemical Society 2017-03-22 2017-06-14 /pmc/articles/PMC5537692/ /pubmed/28326790 http://dx.doi.org/10.1021/acs.nanolett.7b01123 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Rose, Jonas C.
Cámara-Torres, María
Rahimi, Khosrow
Köhler, Jens
Möller, Martin
De Laporte, Laura
Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance
title Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance
title_full Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance
title_fullStr Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance
title_full_unstemmed Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance
title_short Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance
title_sort nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537692/
https://www.ncbi.nlm.nih.gov/pubmed/28326790
http://dx.doi.org/10.1021/acs.nanolett.7b01123
work_keys_str_mv AT rosejonasc nervecellsdecidetoorientinsideaninjectablehydrogelwithminimalstructuralguidance
AT camaratorresmaria nervecellsdecidetoorientinsideaninjectablehydrogelwithminimalstructuralguidance
AT rahimikhosrow nervecellsdecidetoorientinsideaninjectablehydrogelwithminimalstructuralguidance
AT kohlerjens nervecellsdecidetoorientinsideaninjectablehydrogelwithminimalstructuralguidance
AT mollermartin nervecellsdecidetoorientinsideaninjectablehydrogelwithminimalstructuralguidance
AT delaportelaura nervecellsdecidetoorientinsideaninjectablehydrogelwithminimalstructuralguidance