Cargando…
Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice
BACKGROUND: Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537938/ https://www.ncbi.nlm.nih.gov/pubmed/28764799 http://dx.doi.org/10.1186/s12944-017-0533-3 |
_version_ | 1783254278818758656 |
---|---|
author | Sun, Jing-Hui Liu, Xu Cong, Li-Xin Li, He Zhang, Cheng-Yi Chen, Jian-Guang Wang, Chun-Mei |
author_facet | Sun, Jing-Hui Liu, Xu Cong, Li-Xin Li, He Zhang, Cheng-Yi Chen, Jian-Guang Wang, Chun-Mei |
author_sort | Sun, Jing-Hui |
collection | PubMed |
description | BACKGROUND: Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics was conducted to investigate the intervention effect of Schisandra chinensis lignans (SCL) on hyperlipidemia mice induced by high-fat diet (HFD). METHODS: Hyperlipidemia mice were orally administered with SCL (100 mg/kg) once a day for 4 weeks. Serum biochemistry assay of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) was conducted to confirm the treatment of SCL on lipid regulation. Metabolomics analysis on serum samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of liver lipid metabolism, sterol regulatory element-binding proteins (SREBPs) and its related gene expressions were measured by quantitative real-time polymerase chain reaction (RT-PCR) for investigating the underlying mechanism. RESULTS: Oral administration of SCL significantly decreased the serum levels of TC, TG and LDL-c and increased the serum level of HDL-c in the hyperlipidemia mice, and no effect of SCL on blood lipid levels was observed in control mice. Serum samples were scattered in the PCA scores plots in response to the control, HFD and SCL group. Totally, thirteen biomarkers were identified and nine of them were recovered to the normal levels after SCL treatment. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, the anti-hyperlipidemia mechanisms of SCL may be involved in the following metabolic pathways: tricarboxylic acid (TCA) cycle, synthesis of ketone body and cholesterol, choline metabolism and fatty acid metabolism. Meanwhile, SCL significantly inhibited the mRNA expression level of hepatic lipogenesis genes such as SREBP-1c, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and decreased the mRNA expression of liver X receptor α (LXRα). Moreover, SCL also significantly decreased the expression level of SREBP-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the liver of hyperlipidemia mice. CONCLUSION: Anti-hyperlipidemia effect of SCL was confirmed by both serum biochemistry and metabolomics analysis. The mechanism may be related to the down-regulation of LXRα/SREBP-1c/FAS/ACC and SREBP2/HMGCR signaling pathways. |
format | Online Article Text |
id | pubmed-5537938 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55379382017-08-04 Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice Sun, Jing-Hui Liu, Xu Cong, Li-Xin Li, He Zhang, Cheng-Yi Chen, Jian-Guang Wang, Chun-Mei Lipids Health Dis Research BACKGROUND: Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics was conducted to investigate the intervention effect of Schisandra chinensis lignans (SCL) on hyperlipidemia mice induced by high-fat diet (HFD). METHODS: Hyperlipidemia mice were orally administered with SCL (100 mg/kg) once a day for 4 weeks. Serum biochemistry assay of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) was conducted to confirm the treatment of SCL on lipid regulation. Metabolomics analysis on serum samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of liver lipid metabolism, sterol regulatory element-binding proteins (SREBPs) and its related gene expressions were measured by quantitative real-time polymerase chain reaction (RT-PCR) for investigating the underlying mechanism. RESULTS: Oral administration of SCL significantly decreased the serum levels of TC, TG and LDL-c and increased the serum level of HDL-c in the hyperlipidemia mice, and no effect of SCL on blood lipid levels was observed in control mice. Serum samples were scattered in the PCA scores plots in response to the control, HFD and SCL group. Totally, thirteen biomarkers were identified and nine of them were recovered to the normal levels after SCL treatment. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, the anti-hyperlipidemia mechanisms of SCL may be involved in the following metabolic pathways: tricarboxylic acid (TCA) cycle, synthesis of ketone body and cholesterol, choline metabolism and fatty acid metabolism. Meanwhile, SCL significantly inhibited the mRNA expression level of hepatic lipogenesis genes such as SREBP-1c, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and decreased the mRNA expression of liver X receptor α (LXRα). Moreover, SCL also significantly decreased the expression level of SREBP-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the liver of hyperlipidemia mice. CONCLUSION: Anti-hyperlipidemia effect of SCL was confirmed by both serum biochemistry and metabolomics analysis. The mechanism may be related to the down-regulation of LXRα/SREBP-1c/FAS/ACC and SREBP2/HMGCR signaling pathways. BioMed Central 2017-08-01 /pmc/articles/PMC5537938/ /pubmed/28764799 http://dx.doi.org/10.1186/s12944-017-0533-3 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Sun, Jing-Hui Liu, Xu Cong, Li-Xin Li, He Zhang, Cheng-Yi Chen, Jian-Guang Wang, Chun-Mei Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice |
title | Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice |
title_full | Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice |
title_fullStr | Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice |
title_full_unstemmed | Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice |
title_short | Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice |
title_sort | metabolomics study of the therapeutic mechanism of schisandra chinensis lignans in diet-induced hyperlipidemia mice |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537938/ https://www.ncbi.nlm.nih.gov/pubmed/28764799 http://dx.doi.org/10.1186/s12944-017-0533-3 |
work_keys_str_mv | AT sunjinghui metabolomicsstudyofthetherapeuticmechanismofschisandrachinensislignansindietinducedhyperlipidemiamice AT liuxu metabolomicsstudyofthetherapeuticmechanismofschisandrachinensislignansindietinducedhyperlipidemiamice AT conglixin metabolomicsstudyofthetherapeuticmechanismofschisandrachinensislignansindietinducedhyperlipidemiamice AT lihe metabolomicsstudyofthetherapeuticmechanismofschisandrachinensislignansindietinducedhyperlipidemiamice AT zhangchengyi metabolomicsstudyofthetherapeuticmechanismofschisandrachinensislignansindietinducedhyperlipidemiamice AT chenjianguang metabolomicsstudyofthetherapeuticmechanismofschisandrachinensislignansindietinducedhyperlipidemiamice AT wangchunmei metabolomicsstudyofthetherapeuticmechanismofschisandrachinensislignansindietinducedhyperlipidemiamice |