Cargando…

A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications

Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs, WHO grade II gliomas) may grow very slowly for the long periods of time, however they inevitably cause death due to the phenomenon known as the malignant transformation. This refers to the transition of LGGs to mor...

Descripción completa

Detalles Bibliográficos
Autores principales: Bogdańska, Magdalena U., Bodnar, Marek, Piotrowska, Monika J., Murek, Michael, Schucht, Philippe, Beck, Jürgen, Martínez-González, Alicia, Pérez-García, Víctor M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538650/
https://www.ncbi.nlm.nih.gov/pubmed/28763450
http://dx.doi.org/10.1371/journal.pone.0179999
_version_ 1783254378832986112
author Bogdańska, Magdalena U.
Bodnar, Marek
Piotrowska, Monika J.
Murek, Michael
Schucht, Philippe
Beck, Jürgen
Martínez-González, Alicia
Pérez-García, Víctor M.
author_facet Bogdańska, Magdalena U.
Bodnar, Marek
Piotrowska, Monika J.
Murek, Michael
Schucht, Philippe
Beck, Jürgen
Martínez-González, Alicia
Pérez-García, Víctor M.
author_sort Bogdańska, Magdalena U.
collection PubMed
description Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs, WHO grade II gliomas) may grow very slowly for the long periods of time, however they inevitably cause death due to the phenomenon known as the malignant transformation. This refers to the transition of LGGs to more aggressive forms of high grade gliomas (HGGs, WHO grade III and IV gliomas). In this paper we propose a mathematical model describing the spatio-temporal transition of LGGs into HGGs. Our modelling approach is based on two cellular populations with transitions between them being driven by the tumour microenvironment transformation occurring when the tumour cell density grows beyond a critical level. We show that the proposed model describes real patient data well. We discuss the relationship between patient prognosis and model parameters. We approximate tumour radius and velocity before malignant transformation as well as estimate the onset of this process.
format Online
Article
Text
id pubmed-5538650
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-55386502017-08-07 A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications Bogdańska, Magdalena U. Bodnar, Marek Piotrowska, Monika J. Murek, Michael Schucht, Philippe Beck, Jürgen Martínez-González, Alicia Pérez-García, Víctor M. PLoS One Research Article Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs, WHO grade II gliomas) may grow very slowly for the long periods of time, however they inevitably cause death due to the phenomenon known as the malignant transformation. This refers to the transition of LGGs to more aggressive forms of high grade gliomas (HGGs, WHO grade III and IV gliomas). In this paper we propose a mathematical model describing the spatio-temporal transition of LGGs into HGGs. Our modelling approach is based on two cellular populations with transitions between them being driven by the tumour microenvironment transformation occurring when the tumour cell density grows beyond a critical level. We show that the proposed model describes real patient data well. We discuss the relationship between patient prognosis and model parameters. We approximate tumour radius and velocity before malignant transformation as well as estimate the onset of this process. Public Library of Science 2017-08-01 /pmc/articles/PMC5538650/ /pubmed/28763450 http://dx.doi.org/10.1371/journal.pone.0179999 Text en © 2017 Bogdańska et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bogdańska, Magdalena U.
Bodnar, Marek
Piotrowska, Monika J.
Murek, Michael
Schucht, Philippe
Beck, Jürgen
Martínez-González, Alicia
Pérez-García, Víctor M.
A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications
title A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications
title_full A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications
title_fullStr A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications
title_full_unstemmed A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications
title_short A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications
title_sort mathematical model describes the malignant transformation of low grade gliomas: prognostic implications
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538650/
https://www.ncbi.nlm.nih.gov/pubmed/28763450
http://dx.doi.org/10.1371/journal.pone.0179999
work_keys_str_mv AT bogdanskamagdalenau amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT bodnarmarek amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT piotrowskamonikaj amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT murekmichael amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT schuchtphilippe amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT beckjurgen amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT martinezgonzalezalicia amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT perezgarciavictorm amathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT bogdanskamagdalenau mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT bodnarmarek mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT piotrowskamonikaj mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT murekmichael mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT schuchtphilippe mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT beckjurgen mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT martinezgonzalezalicia mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications
AT perezgarciavictorm mathematicalmodeldescribesthemalignanttransformationoflowgradegliomasprognosticimplications